

MATHS

BOOKS - UNIQUE MATHS (HINGLISH)

PYTHAGORS THEORM

Practice Set 21

1. Identify, with reaosn, which of the are Pythagorean triplets.

(3, 5, 4)

2. Identify, with reaosn, which of the are Pythagorean triplets.

(4, 9, 12)

View Text Solution 3. Identify, with reaosn, which of the are Pythagorean triplets. (5, 12, 13)**View Text Solution**

4. Identify, with reaosn, which of the are Pythagorean triplets.

(24, 70, 74)

5. Identify, with reaosn, which of the are Pythagorean triplets.

(10, 24, 27)

6. $\angle MNP = 90^{\circ}, \; NQ \perp MP, MQ = 9, QP = 4, \; {
m find} \; {
m NQ}.$

7. In the adjoining figure.

 $\angle QPR = 90^{\circ},$

seg $PM \perp segQR$ and Q - M - R, PM = 10, QM = 8,

find QR.

8. Find RP and PS using the information given in ΔPSR .

9. For finding AB and BC with the help of information given in figure, complete the following activity.

10. Find the side and perimeter of a square whose diagonal is

10 cm.

11. $\angle DFE = 90^\circ, FG \perp ED, IFGD = 8, FG = 12, ~{
m find}$ (1) EG (2) FD (3) EF

12. Find the diagonal of a reactiangle whose length is 35 cm and breadth is 12 cm.

13. In the given figure, M is the midpoint of QR. $\angle PQR = 90^{\circ}$.

Prove that, $PQ^2 = 4PM^2 - 3PR^2$.

14. Walls of two buildings on eiterh side of a street are parallel to each other. A ladder 5.8m long is placed on the street such that its top jist reaches the window of a building at the height of 4 m. On turning the ladder over to the other side of the street, its top touches the window of the other building at a

height 4.2 m. Find the width of the street.

 $PQ=11, PR=17, PS=13, \; {\rm Find} \; {\rm QR}.$

3. In adjoining figure, seg PS is the median of $\Delta PQRadnPT \perp QR$. Prove that

4. In Figure point T is the interior of reactangle PQRS, Prove that, $TS^2 + TQ^2 + TR^2$ (As shown in the figure, drawn seg AB

|| side SR and A-T-B)

1. Out of the following which is the Pythagorean triple?

A. (1, 5, 10)

B.(3, 4, 5)

C.(2, 2, 2)

D.(5, 5, 2)

Answer: B

2. In a right angled triangle, if sum of the squares of sides making right angle is 169 then what is the length of the hypotenuse ?

A. 15

B. 13

C. 5

D. 12

Answer: B

View Text Solution

3. Out of the dates given below which date constitutes a Pythagorean triplet ?

A. 15/08/17

B. 16/08/16

C. 42799

D.
$$\frac{4}{9}/15$$

Answer: A

4. If a,b, c are sides of a triangle and $a^2 + b^2 = c^2$, name the type of triangle.

A. Obtuse angled triangle

B. Acute angled triangle

C. Right angled triangle

D. Equilateral triangle

Answer: C

View Text Solution

5. Find the perimeter of a square, if its diagonal is $10\sqrt{2}cm$.

A. 10 cm

 $\mathrm{B.}\,40\sqrt{2}$

 $\mathsf{C.}\,20cm$

 $\mathsf{D.}\,40cm$

Answer: D

Watch Video Solution

6. Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm. Find the length of the altitude.

A. 9 cm

B. 4 cm

C. 6 cm

D. $2\sqrt{6}$ cm

7. Height and base of a right angled triangle are 24 cm and 18 cm find the length of its hypotenus.

A. 24 cm

B. 30 cm

C. 15 cm

D. 18 cm

Answer: A

A. 30°

B. 60°

C. 90°

D. $45^{\,\circ}$

Answer: A

View Text Solution

9. Find the height of an equilateral triangle having side 2a

Watch Video Solution

10. Do side 7 cm, 24 cm, 25 cm form a right angled triangle ? Given reason.

	View Text Solution	
--	--------------------	--

11. Find the length a diagonal of a reactangle having sides 11 cm

and 60cm.

View Text Solution

12. Find the length of the hypotenuse of a right angled triangle

if remaining sides are 9 cm and 12 cm.

14. In $\Delta PQR, PQ=\sqrt{8}, QR=\sqrt{5}, PR=\sqrt{3}.$ $Is\Delta PQR$ a

right angled triangle ? If yes, which angle is of 92° ?

View Text Solution

15. In $\Delta RS an g \leq S = 90^\circ, \ \angle T = 30^\circ, RT = 12$ cm then

find RS and ST.

16. Find the diagonal of a reactangle whose length is 16 cm and

area is 192 sq.cm.

19. ΔABC is an equilateral triangle. Point P is on base BC such that $PC=rac{1}{3}$ BC, if AB=6 cm find AP.

View Text Solution

20. From the information given in the figure, prove that

 $PM = PN = \sqrt{3} imes a$

21. Prove that the sum of squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

22. Pranali and Prased started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was $15\sqrt{2}$ km. Find their speed per hour.

View Text Solution

23. In $\Delta ABC,$ $\angle BAC=90^\circ,\,$ seg BL and seg CM are median of $\Delta ABC.$ Then prove that: $4ig(Bl^2+Cm^2ig)=5BC^2$

24. Sum of the squares of adjacent sides of a parallelogram is

130 sq. cm and length of one of its diagonals is 14 cm. Find the length of the other diagonal.

25. In $\triangle ABC$, seg $AD \perp$ seg BCDB = 3CD.

Prove that : $2AB^2 = 2AC^2 + BC^2$

26. In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm. Find the distance between the vertex

opposite the base and the centrioid.

28. In the figure ΔPQR is an equilateral triangle. Point S is on

seg QR such that

$$QS = rac{1}{3}QR.$$

Prove that : $9PS^2 = 7PQ^2$

1. In $\triangle ABC, \angle A = 90^{\circ}, AB = AC, D$ is any point on BC.

Provew that $BD^2 + CD^2 = 2AD^2$.

2. ΔABC is a triangle where $\angle C = 90^{\circ}, \ \leq tBC = a, CA = b, AB = c$ and let 'p' be the length of the perpendicular from C on AB. Prove that: cp = ab

Yiew Text Solution
3.
$$\Delta ABC$$
 is a triangle where

 $igtriangle C=90^\circ,\ \leq tBC=a, CA=b, AB=c$ and let 'p' be the

length of the perpendicular from C on AB. Prove that: ?

(ii) $rac{1}{p^2} = rac{1}{a^2} + rac{1}{b^2}$

4. ΔABC is an equilateral triangle. Point D is on seg BC such that $BD = \frac{1}{5}AC$. Prove : that $25AD^2 = 21AB^2$ View Text Solution 5. In $\Delta ABC, \angle C = 45^{\circ},$ prove that $AB^2 + BC^2 - 4A(\Delta ABC).$ **View Text Solution**

Unique Practice Session Mcq S 1 Marks Question

1. Find the diagonal of a reactangle whose sides are 35 m and

12 m.

2. In $\Delta PQR, p = 17, q = 8, r = 15$. State with reason whether the triangle is right-angled triangle or not.

3. In an	isoceles	right a	angled	triangle.	the l	ength	of hy	potenuse

is 8 cm. Find the remaining sides.

View Text Solution

4. Decide whether (5, 12, 13) is Pythagorean triplet or not.

5. In $\Delta ABC \angle B = 90^{\circ}, \angle A = 30^{\circ}$. IfAC = 8cm. Find BC.

View Text Solution

6. The perpendicular sides of a right angled triangle are 7 cm

and 24 cm. Find the length of the hypotenuse.

View Text Solution

7. The length of side of square is 7 cm. Find the legth of its

diagonal.

D View Text Solution

8. Is $6, 4\sqrt{52}$ a Pythagoran triplet ? Give reason.

3. The length of diagonals of a rhombus are 24 cm and 10 cm

respectively. Find its side.

View Text Solution

5. In $\Delta ABC, \angle B=90^\circ, AB=5, BC=12$, then find the

length of median drawn from point B to side AC.

6. In $\Delta PQR, \angle Q=90^\circ,$ seg $RS\perp$ side PR. If PQ=16, QR=30. Find QS.

7. The lower end of ladder is at the distance of 27 cm from the base of a pillar and its upper end reaches at the height of 120 cm on the pillar. Find the length of the ladder.

View Text Solution

8. A wooden box has dimensions 12 cm, 9 cm, 8 cm. Find maximum length of a stick which can be placed inside the box.

9. In $\Delta ABC, ot ABC = 150^\circ, AD \perp BC, AB = 20cm.$ Find

height of ΔABC .

10. See figure. In $\Delta ABC, ar{B}90^\circ, ar{A}=30^\circ, AC=14, \,$ then

find AB and BC.

View Text Solution

11. ${ot}PQR=90^\circ, segQn\perp segPR, PN=9, NR=16.$ Find

QN.

12. In the right angled triangle, sides making right angle are 9

cm and 12 cm. Find the length of the hypotenuse.

Unique Practice Session Mcq S 3 Marks Question

1. Starring from Mina/s house Leena first goes 12 m to north then 73 m to west, then 67 m to south and finally 25 m to east and searches Tina's house. Then what is the distance between Mina's ans Tina's house ?

 $\Delta PQR, PQ = QR, m \measuredangle PQR = 120^\circ, Qd \perp PR, P-D-R$

then prove that

 ${
m m}PR=\sqrt{3}QR=\sqrt{3}PQ$

View Text Solution

3. In $\Delta PQR, \angle PQR = 90^\circ, segQS \perp segPR, ext{ then find x,y,z.}$

4. Two poles of height 7 cm and 12 cm stand on a plane ground. If the distance between their feet is 12 m, distance between their feet is 12 m, find the distance between their tips. 5.

 $\Delta ABC, segAd \perp segBC, \angle C, \ = 45^{\circ}, BD = 5 \ ext{and} \ AC = 5\sqrt{2}$

then find AD and BC.

View Text Solution

6. In $\Delta PQR, \angle PQR = 90^{\circ},$

seg $QS \perp$ seg PR then find x,y,z.

View Text Solution

Unique Practice Session Mcq S 4 Marks Question

In

- **1.** \Box *PQRS* is trapezium. Seg *PQ* | | *segRS*,
- $PS = 6\sqrt{2},$

PQ = 8.

Find SR.

View Text Solution

2. The sides of a triangle are 11 m, 60 m, 61 m. Find the altitude

to its smallest side and longest side.

Hots

1. In ΔABC , seg $AM \perp segBC, AB = 18, BC = 20, AC = 22$. Find BM and CM.