đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - NAND LAL PUBLICATION

TRIANGLES

Exercise 61

1. Give two different examples of pair of ,- similar
figures.

0
2. Give two different examples of pair of ,- nonsimilar figures.

- Watch Video Solution

3. State whether the following quadrilaterals are similar or not :-

Exercise 62

1. In fig. (i) and (ii), $D E \| B C$. Find $E C$ in (i) and $A D$ in
(ii).

(D) Watch Video Solution
2. In fig. (i) and (ii), $D E \| B C$. Find $E C$ in (i) and $A D$ in (ii).

- Watch Video Solution

3. E and F are points on the sides $P Q$ and $P R$ respectively of a $\angle P Q R$. For each of the following cases, state whether EF || OR : PE = 3.9 $\mathrm{cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$.

- Watch Video Solution

4. E and F are points on the sides PQ and PF respecively of a $\triangle P Q R$. For each of the following series, state whether EF|| QR:
$P E=4 \mathrm{~cm}, Q E=4.5 \mathrm{~cm}, P F=8 \mathrm{~cm}$ and $R E=9$

- Watch Video Solution

5. E and F are points on the sides $P Q$ and $P R$ respectively of a $\angle P Q R$. For each of the
following cases, state whether EF || QR: PQ = 1.28
$\mathrm{cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$.

(D) Watch Video Solution

6. In fig., LM || CB , and LN||CD.Prove that
$\frac{A M}{A B}=\frac{A N}{A D}$.

D Watch Video Solution
7. In fig. $D E$ || $A C$, and $D F \| A E$ prove that $\frac{B F}{E F}=\frac{B E}{E C}$.

(D) Watch Video Solution

8. In fig., A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B \| P Q$ and $A C|\mid P R$. Show
that $B C \| Q R$.

D Watch Video Solution

9. $A B C D$ is a trapezium in which $A B$ II $D C$ and its
diagonals intersect each other at the point 0 .
show that $\frac{A O}{B O}=\frac{C O}{D O}$.

Exercise 63

1. State which pairs of triangles in Fig. are similar.

Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

2. State which pairs of triangles in Fig. are similar.

Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

- Watch Video Solution

3. State which pairs of triangles in Fig. are similar.

Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

- Watch Video Solution

4. State which pairs of triangles in Fig. are similar.

Write the similarity criterion used by you for
answering the question and also write the pairs of similar triangles in the symbolic form :

(D) Watch Video Solution

5. State which pairs of triangles in Fig. are similar.

Write the similarity criterion used by you for answering the question and also write the pairs
of similar triangles in the symbolic form :

- Watch Video Solution

6. State which pairs of triangles in Fig. are similar.

Write the similarity criterion used by you for answering the question and also write the pairs
of similar triangles in the symbolic form :

(D) Watch Video Solution

7. In fig., $\triangle O D C-\triangle O B A, \angle B O C=125 \circ 0$ and $\angle C D O=70 \circ 0$. Find $\angle D O C, \angle D C O$ and
$\angle O A B$.

(D) Watch Video Solution

8. Diagonals $A C$ and $B D$ of a trapezium ABCD with AB || DC intersect each other at the point 0 . Using a similarity criterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.

- Watch Video Solution

9. In fig., $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$. Show that $\triangle P Q S \sim \triangle T Q R$.

D Watch Video Solution

10. D is a point on side BC of $\triangle A B C$ such that AD
$=A C$ (see Fig. 7.47). Show that $A B>A D$.

Fig. 7.47

- Watch Video Solution

11. In figure $\triangle A B E=\triangle A C D$ show that $\triangle A D E \sim \triangle A B C$.

- Watch Video Solution

12. In figure, altitudes AD and CE of $\triangle A B C$ intersect each ther at the point P. show that:

$\Delta A E P \sim \Delta C D P$

D Watch Video Solution
13. In figure, altitudes AD and CE of $\triangle A B C$ intersect each ther at the point P. show that:

$\triangle A B D \sim \Delta C B E$

- Watch Video Solution

14. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that :-
$\triangle A E P \sim \triangle A D B$.

- Watch Video Solution

15. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that :-

$\triangle P D C \sim \triangle B E C$.

- Watch Video Solution

16. $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (See Fig.

extended to intersect $B C$ at P, show that $\Delta A B P \cong \Delta A C P$.

D Watch Video Solution

17. In Fig., $A B C$ and $A M P$ are two right triangles, right angled at B and M respectively. Prove that :-
$\triangle A B C \sim \triangle A M P$.

- Watch Video Solution

18. In Fig., $A B C$ and $A M P$ are two right triangles, right angled at B and M respectively. Prove that :-
$\frac{C A}{P A}=\frac{B C}{M P}$.

- Watch Video Solution

19. CD and GH are respectively the bisectors of
$\angle A C B$ and $\angle E G F$ such that D and H lie on sides

AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively.
If $\triangle A B C \sim \triangle F E G$, show that : $-\frac{C D}{G H}=\frac{A C}{F G}$.

- Watch Video Solution

20. CD and GH are respectively the bisectors of
$\angle A C B$ and $\angle E G F$ such that D and H lie on sides
AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively.
If $\triangle A B C \sim \triangle F E G$, show that :-
$\triangle D C B \sim \triangle H G E$.

- Watch Video Solution

21. CD and GH are respectively the bisectors of
$\angle A C B$ and $\angle E G F$ such that D and H lie on sides

AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively.
If $\triangle A B C \sim \triangle F E G$, show that :-
$\triangle D C B \sim \triangle H G E$.

D Watch Video Solution

22. In Fig., E is a point on side CB produced of an isosceles triangle $A B C$ with $A B=A C$. If $A D \perp B C$
and EF $\perp \mathrm{AC}$, prove that $\triangle A B D \sim \triangle \mathrm{ECF}$.

D Watch Video Solution
23. If $A D$ and $P M$ are medians of triangles $A B C$ and PQR , respectively where $\triangle A B C \sim \triangle P Q R$,

Prove that $\frac{A B}{P Q}=\frac{A D}{P M}$.

- Watch Video Solution

Exercise 64

1. Let $\triangle A B C \sim \triangle D E F$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find $B C$.

D Watch Video Solution

2. Diagonals of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point O. If $A B=2 C D$,find the ratio of the areas of triangles $A O B$ and COD.

(D) Watch Video Solution

3. If the areas of two similar triangles are equal, prove that they are congruent.
4. If D, E and F are respectively, the mid-points of AB, AC and BC in $\triangle A B C$, then $\mathrm{BE}+\mathrm{AF}$ is equal to

- Watch Video Solution

5. Prove that the areas of the equilateral triangle described on the side of a square is equal to half the area of the equilateral triangle described on one of its diagonal.

- Watch Video Solution

6. If $A B C$ and $B D E$ are two equilateral triangles
such that D is the mid-point of $B C$, then find $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle B D E)$
A. $2: 1$
B. 1:2
C. $4: 1$
D. 1: 4

Answer: C

- Watch Video Solution

7. Tick the correct answer and justify : Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio
A. $2: 3$
B. $4: 9$
C. $81: 16$
D. $16: 81$

Answer: D

1. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
:- $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$

D Watch Video Solution

2. Sides of triangles are given below. Determine which of them are right triangles. In case of a
right triangle, write the length of its hypotenuse.
:- $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$.

D Watch Video Solution

3. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse. :- $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$.
4. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
:- $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$.

(D) Watch Video Solution

5. PQR is a triangle right angled at P and M is a point on QR such that $\mathrm{PM} \perp \mathrm{QR}$. Show that $P M^{2}=Q M . M R$.
6. In $A B D$ is a triangle right angled at A and
$A C \perp B D$. Show right angled at A and $A C \perp B D$. Show that

$A B^{2}=B C . B D$
7. In $A B D$ is a triangle right angled at A and
$A C \perp B D$. Show right angled at A and
$A C \perp B D$. Show that

$A C^{2}=B C . D C$

- Watch Video Solution

8. In $A B D$ is a triangle right angled at A and
$A C \perp B D$. Show right angled at A and
$A C \perp B D$. Show that

$A D^{2}=B D . C D$
9. $A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.

- Watch Video Solution

10. $A B C$ is an isosceles triangle with $A C=B C$. If
$A B^{2}=2 A C^{2}$, prove that ABC is right triangle.

- Watch Video Solution

11. $A B C$ is an equilateral triangle ofside $2 a$. Find each of its altitudes.

(D) Watch Video Solution

12. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

- Watch Video Solution

13. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

D Watch Video Solution

14. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

- Watch Video Solution

Exercise 66

1. In figure, D is point on hypotenuse $A C$ of
$\Delta A B C, B D \perp A C, D M \perp B C$ and $D N \perp A B$.

Prove that

$D M^{2}=D N . M C$
2. In figure, D is point on hypotenuse AC of
$\Delta A B C, B D \perp A C, D M \perp B C$ and $D N \perp A B$.

Prove that

$D N^{2}=D M . A N$

- Watch Video Solution

3. In figure, $A B C$ is a triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$ produced. Prove that $A C^{2}=A B^{2}+B C^{2}+2 B C B D$.

4. In figure, $A D$ is a median of a triangle $A B C$ and
$A M \perp B C$. Prove that

$$
A C^{2}=A D^{2}+B C . D M+\left(\frac{B C}{2}\right)^{2}
$$

- Watch Video Solution

5. In figure, $A D$ is a median of a triangle $A B C$ and
$A M \perp B C$. Prove that

$A B^{2}=A D^{2}-B C . D M+\left(\frac{B C}{2}\right)^{2}$
(D) Watch Video Solution
6. In figure, $A D$ is a median of a triangle $A B C$ and
$A M \perp B C$. Prove that

$A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$.
(D) Watch Video Solution
7. Prove that sum of squares of the diagonals of a parallelogram is equal to sum of squares of its sides.

(D) Watch Video Solution

8. In two chords $A B$ and $C D$ intersect each $A B$ and

CD intersect each other at the point P. Prove that

$\triangle A P C \sim \Delta D P B$
(D) Watch Video Solution
9. In two chords $A B$ and $C D$ intersect each $A B$ and

CD intersect each other at the point P. Prove that

$A P . P B=C P . D P$

- Watch Video Solution

10. In two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) outside the circle. Prove that

$\triangle P A C \sim P D B$

- Watch Video Solution

11. In two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) outside the circle. Prove that

$P A . P B=P C . P D$

- Watch Video Solution

