©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - SWAN PUBLICATION

POLYNOMIALS

Exercise 21

1. The graphs of $y-p(x)$ are given in Fig. below,
for some polynomials $p(x)$. Find the number of
zeroes of $p(x)$, in each case.

- Watch Video Solution

Exercise 22

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^{2}-3$.

D Watch Video Solution

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : 1,1

Exercise 23

1. Apply the division algorithm to find the quotient and remainder on dividing $p(x)$ by g
(x) as given below
$p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$.

- Watch Video Solution

2. Check whether the first polynomial is a
factor of the second polynomial by applying
the
division
$t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$.

D Watch Video Solution

3. Obtain all other zeroes of
$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$ if two of its
zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

D Watch Video Solution

4. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$ respectively find $g(x)$.

D Watch Video Solution

5. Give examples of polynomials $p(x), g(x), q$
(x) and $r(x)$, which satisfy the division algorithm and : $\operatorname{deg} p(x)=\operatorname{deg} q(x)$.
6. Verify that the number given alongside of the cubic polynomials below are their zeroes.

Also verify the relationship between the zeroes . and the coefficients in each case : $x^{3}+4 x^{2}+5 x-2,2,1,1$.

- Watch Video Solution

2. If the zeroes of the polynomial
$x^{3}-3 x^{2}+x+1$ are a $-\mathrm{b}, \mathrm{a}, \mathrm{a}+\mathrm{b}$, find a and
b.

- Watch Video Solution

3. If two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeroes.

- Watch Video Solution

4. Find a cubic polynomial with the sum, sum
of the product of its zeroes taken two at a
time, and the product of its zeroes as $2,-7,-14$
respectively.

D Watch Video Solution

5.

If
the
polynomial
$x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to, be $x+a$, find k and a.

D Watch Video Solution

