©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - SWAN PUBLICATION

TRIANGLES

Exercise 61

1. Fill in the blanks using the correct word
given in brackets :- All circles are
(congruent,similar)
2. Fill in the blanks using the correct word given in brackets :- All squares are (similar,congruent) .

- Watch Video Solution

3. Fill in the blanks using the correct word given in brackets :- All Triangles are similar . (isosceles,equilateral).

Watch Video Solution

4. Fill in the blanks using the correct word given in brackets :- Two polygons of the same number of sides are similar, if :- their corresponding angles are........ (equal , proportional).

D Watch Video Solution

5. Give two different examples of pair of
(i) similar figures (ii) non-similar figures.

6. State whether the following quadrilaterals

 are similar or not :-

- Watch Video Solution

1. In fig. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).

- Watch Video Solution

2. In fig., LM || CB , and LN||CD.Prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

- Watch Video Solution

3. In fig., A, B and C are points on $O P, O Q$ and

OR respectively such that AB || PQ and AC || PR.

Show that $B C \| Q R$.

- Watch Video Solution

4. Using Basic Proportionality theorem, prove thata line drawn through the mid-point of one side of a triangle parallel to another side
bisects the third side. (Recall that you have proved it in class IX).

D Watch Video Solution

5. Using converse of Basic Proportionality theorem prove that the line joining the midpoints of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

6. $A B C D$ is a trapezium in which $A B$ II $D C$ and its

diagonals intersect each other at the point O .
show that $\frac{A O}{B O}=\frac{C O}{D O}$.

- Watch Video Solution

7. The diagonals of a quadrilateral $A B C D$ intersect each other at the point o Such that $\frac{A O}{B O}=\frac{C O}{D O}$, show that ABCD is trapezium.

- Watch Video Solution

1. In fig., $\triangle O D C-\triangle O B A$,
$\angle B O C=125 \circ 0$ and $\angle C D O=70 \circ 0$. Find
$\angle D O C, \angle D C O$ and $\angle O A B$.

- Watch Video Solution

2. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B$ || $D C$ intersect each other at the point
O. Using a similarity criterion for two triangles
, show that $\frac{O A}{O C}=\frac{O B}{O D}$.

- Watch Video Solution

3. In fig., $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$. Show that $\triangle P Q S \sim \triangle T Q R$.

- Watch Video Solution

4. S and T are points on sides PR and QR of
$\triangle P Q R$ such that $\angle P=\angle R T S$. Show that
$\triangle R P Q \sim \triangle R T S$.

- Watch Video Solution

5. In figure $\triangle A B E=\triangle A C D$ show that
$\triangle A D E \sim \triangle A B C$.

- Watch Video Solution

6. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that:
(i) $\triangle A E P \sim \triangle C D P$
(ii) $\triangle A B D \sim \triangle C B E$
(iii) $\triangle A E P \sim \triangle A D B$
(iv) $\triangle P D C \sim \triangle B E C$

- Watch Video Solution

7. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F.

Show that $\triangle A B E \sim \triangle C F B$.

D Watch Video Solution

8. In Fig., ABC and AMP are two right triangles,
right angled at B and M respectively. Prove that:
(i) $\triangle A B C \sim \triangle A M P$
(ii) $\frac{C A}{P A}=\frac{B C}{M P}$

D Watch Video Solution

9. CD and GH are respectively the bisectors of
$\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$
respectively. If $\triangle A B C \sim \triangle F E G$, show that
$:-\frac{C D}{G H}=\frac{A C}{F G}$.

- Watch Video Solution

10. In Fig., E is a point on side CB produced of an isosceles triangle $A B C$ with $A B=A C$. If $A D$
$\perp B C$ and $E F \perp A C$, prove that
$\triangle A B D \sim \triangle$ ECF.

D Watch Video Solution

11. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides PQ and QR and median PM of $\triangle P Q R$
(see Fig.). Show that $\triangle A B C \sim \triangle P Q R$.

D Watch Video Solution

12. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $C A^{2}=$ CB. CD.

D Watch Video Solution

13. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides PQ and QR and median PM of $\triangle P Q R$ (see Fig.). Show that $\triangle A B C \sim \triangle P Q R$.

- Watch Video Solution

14. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the
same time a tower casts a shadow 28 m long.

Find the height of the tower.

D Watch Video Solution

15. If $A D$ and $P M$ are medians of triangles $A B C$ and $\quad P Q R$, respectively where
$\triangle A B C \sim \triangle P Q R$, Prove that $\frac{A B}{P Q}=\frac{A D}{P M}$

Watch Video Solution

Exercise 64

1. Let $\triangle A B C \sim \Delta D E F$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4$ cm , find BC .
(Watch Video Solution
2. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=2$
$C D$,find the ratio of the areas of triangles $A O B$ and COD.

D Watch Video Solution

3. In Fig, ABCand DBC are Iwo triangles on the
same base $B C$. If $A D$ intersects $B C$ at O,show
that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$.

Fig, 6.44

D Watch Video Solution

4. If the areas of two similar triangles are equal, prove that they are congruent.
5. D, E and F are respectively the mid points of the sides BC, CA and AB of $\triangle A B C$.

Determine the ratio of the areas of triangles
DEF and ABC.

D Watch Video Solution

6. Prove that the ratio of the areas of two
similar triangles is equal to the square of the ratio of their corresponding medians.
7. Prove that the areas of the equilateral triangle described on the side of a square is equal to half the area of the equilateral triangle described on one of its diagonal.

D Watch Video Solution

8. Tick the correct answer and justify : ABC and

BDE are two equilateral triangles such that D
is the mid-point of $B C$. Ratio of the areas of triangles $A B C$ and $B D E$ is
A. 2:1
B. $1: 2$
C. $4: 1$
D. 1: 4

Answer: C
(Watch Video Solution
9. Tick the correct answer and justify : Sides of
two similar triangles are in the ratio 4:9. Areas
of these triangles are in the ratio
A. $2: 3$
B. $4: 9$
C. $81: 16$
D. 16:81

Answer: D

- Watch Video Solution

1. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M . M R$.

D Watch Video Solution

2. In Fig., $A B D$ is a triangle right angled at A and $A C \perp B D$. Show that:
(i) $A B^{2}=B C \cdot B D$
(ii) $A C^{2}=B C \cdot D C$
(iii) $A D^{2}=B D \cdot C D$

- Watch Video Solution

3. $A B C$ is an isosceles triangle right angled at
C. Prove that $A B^{2}=2 A C^{2}$.

Watch Video Solution

4. $A B C$ is an isosceles triangle with $A C=B C$. If $A B^{2}=2 A C^{2}$, prove that ABC is right triangle.

- Watch Video Solution

5. $A B C$ is an equilateral triangle ofside 2 a. Find each of its altitudes.
(Watch Video Solution
6. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

D Watch Video Solution

7. A ladder 10 m long reaches a window 8 m
above the ground. Find the distance of the foot of the ladder from base of the wall.

D Watch Video Solution

8. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

D Watch Video Solution

9. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same
airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours ?

D Watch Video Solution

10. Two poles of heights 6 m and 11 m stand on
a plane ground. If the distance between the
feet of the poles is 12 m , find the distance between their tops.
11. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

D Watch Video Solution

12. The perpendicular from A on side $B C$ of a
$\triangle A B C$ intersects BC at D such that $\mathrm{DB}=3 \mathrm{CD}$
(see Fig) Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$

Fig. 6.55

D Watch Video Solution

13. In an equilateral triangle $A B C$. D is a point
on side $B C$ such that $B D=1 / 3 B C$. Prove that
$9 A D^{2}=7 A B^{2}$.

- Watch Video Solution

14. In an equilateral triangle, prove that three
times the square of one side is equal to four times the square of one of its altitudes.

D Watch Video Solution

15. Tick the correct answer and justify: In
$\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$.

The angle B is ,
A. 120°
B. 60°
C. 90°
D. 45°

Answer: C

- Watch Video Solution

Exercise 66 Optional

1. In Fig. 6.56, PS is the bisector of $\angle Q P R$ of
$\triangle P Q R$. Prove that $\frac{Q S}{S R}=\frac{P Q}{P R}$

Fig. 6.56

D Watch Video Solution

2. In fig., $A B C$ is triangle in which
$\angle A B C>90 \circ 0$ and $\mathrm{AD} \perp \mathrm{BC}$ produced,
prove that $A C^{2}=A B^{2}+B C^{2}+2 B C . B D$.

- Watch Video Solution

3. In fig., $A B C$ is a triangle in which
$\angle A B C<90 \circ 0$, and $A D^{\prime} \perp \mathrm{BC}$ produced,
prove that $A C^{2}=A B^{2}+B C^{2}-2 B C . B D$.

- Watch Video Solution

4. Prove that the sum of the squares of the
sides of a rhombus is equal to the sum of the
squares of its diagonals.

5. In fig., two chords $A B$ and CD intersect each

 other at the point P prove that :-$\triangle A P C \sim \triangle D P B$.

- Watch Video Solution

6. In fig., two chords $A B$ and $C D$ of a circle intersect each other at point P (when produced) outside the circle prove :-
$\triangle P C A \sim \triangle P D B$

D Watch Video Solution
7. In fig., D is a point on side BC of $\triangle A B C$
such that $\frac{B D}{D C}=\frac{A B}{A C}$. Prove that, AD is bisector of $\angle B A C$.

- Watch Video Solution

8. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod.

Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out? If she pulls in the string at the rate of 5 cm per second, what will the horizontal distance of the fly from her after 12
seconds?

- Watch Video Solution

