# ©゙’doubtnut India's Number 1 Education App 

## MATHS

## BOOKS - PSEB

## POLYCNOMIALS

Example

1. In general, given a polynomial $p(x)$ of degree
n , the graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$ intersects the x -axis
atmost $n$ points. Therefore, a polynomial $p(x)$
of degree n has atmost n zeroes:


- Watch Video Solution


## 2. find the number of zeroes:



D Watch Video Solution
3. In general, given a polynomial pix) of degree
$n$, the graph of $y=p(x)$ intersects the $x$-axis at
utmost $n$ points. Therefore, a polynomial $p(. r)$
of degree n has at most n zeroes:

4. The graphs of $y=p(x)$ arc giver in Fig. 2.10 below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$,in each ease


Fig. 2.10

D Watch Video Solution
5. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^{2}+7 x+10$.

## D Watch Video Solution

6. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^{2}-3$.
7. Find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively. : -3,2

## D Watch Video Solution

8. Verify that $3,-1,-\frac{1}{3}$ are the zeroes of the cubic polynomial
$p(x)=3 x^{3}-5 x^{2}-11 x-3$ and then verify
the relationship between the zeroes and the coefficients.

## D Watch Video Solution

9. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^{2}-2 x-8$.
10. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $4 s^{2}-4 s+1$.

## D Watch Video Solution

11. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $6 x^{2}-3-7 x$.
12. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $4 u^{2}+8 u$.

- Watch Video Solution

13. Find the zeroes of the following quadratic polynomials and verify the relationship
between the zeroes and the coefficients. : $t^{2}-15$.

## D Watch Video Solution

14. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $3 x^{2}-x-4$.
15. Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively. : $\frac{1}{4},-1$.

## - Watch Video Solution

16. Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively. : $\sqrt{2}, \frac{1}{3}$.

## - Watch Video Solution

17. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : $0, \sqrt{5}$.

## D Watch Video Solution

18. Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively. : 1,1

## - Watch Video Solution

19. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : -1/4,1/4 .

## - Watch Video Solution

20. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : 4,1 .

- Watch Video Solution

21. Divide $2 x^{2}+3 x+1 b y x+2$.

## - Watch Video Solution

22. Apply the division algorithm to find quotient and remainder on dividing $p(x)$ by $g$

$$
\begin{aligned}
& \text { (x) } \begin{array}{l}
\text { as } \\
p(x)=3 x^{3}+x^{2}+2 x+5, g(x) 1+2 x+x^{2}
\end{array}
\end{aligned}
$$

23. Divide $3 x^{2}-x^{3}-3 x+5 b y x-1-x^{2}$, and verify the division algorithm.

## - Watch Video Solution

24. Find all the zeroes of
$2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$ if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
( Watch Video Solution
25. Apply the division algorithm to find the quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by g
(x) as given below
$p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$.

## - Watch Video Solution

26. Apply the division algorithm to find the quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by g
(x) as
given below

$$
p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x
$$

## D Watch Video Solution

27. Apply the division algorithm to find the quotient and remainder on dividing $p(x)$ by $g$

$$
\begin{aligned}
& \text { (x) } \begin{array}{c}
\text { as } \\
p(x)=x^{4}-5 x+6, g(x)=2-x^{2}
\end{array}, ~
\end{aligned}
$$

28. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm
$t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$.

## - Watch Video Solution

29. Check whether the first polynomial is a
factor of the second polynomial by applying
the
division algorithm
$x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$.
30. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$.

## D Watch Video Solution

31. Obtain all other zeroes of
$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$ if two of its
zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

## - Watch Video Solution

32. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$ respectively find $g(x)$.

## - Watch Video Solution

33. Give examples of polynomials $\mathrm{p}(\mathrm{x}), \mathrm{g}(\mathrm{x})$, q
( x ) and $\mathrm{r}(\mathrm{x})$, which satisfy the division algorithm and: $\operatorname{deg} p(x)=\operatorname{deg} q(x)$.

## Watch Video Solution

34. Give examples of polynomials $p(x), g(x), q$ ( $x$ ) and $r(x)$, which satisfy the division algorithm and : $\operatorname{deg} p(x)=\operatorname{deg} q(x)$.

## D Watch Video Solution

35. Give examples of polynomials $p(x), g(x), q$
( $x$ ) and $r(x)$, which satisfy the division algorithm and: $\operatorname{deg} r(x)=0$.
36. Verify that the number given alongside of the cubic polynomials below are their zeroes.

Also verify the relationship between the zeroes . and the coefficients in each case :
$2 x^{3}+x^{2}-5 x+2, \frac{1}{2}, 1,-2$.

## D Watch Video Solution

37. Verify that the numbers given alongside of
the cubic polynomials below are their zeroes,

Also verify the relationship between the zeroes and the coefficients in each ease: $x^{3}+4 x^{2}-5 x+2,2,1,1$

## D Watch Video Solution

38. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, - 7, - 14 respectively.
39. If the zeroes of the polynomial
$x^{3}-3 x^{2}+x+1$ are $\mathrm{a}-\mathrm{b}, \mathrm{a}, \mathrm{a}+\mathrm{b}$, find a and
b .

## D Watch Video Solution

40. If two zeroes of the polynomial
$x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$,
find other zeroes.

- Watch Video Solution

41. 

If
the
polynomial
$x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by
another polynomial $x^{2}-2 x+k$, the
remainder comes out to be $\mathrm{x}+\mathrm{a}$, find k and a .
( Watch Video Solution

