©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - PSEB

REAL NUMBERS

Example

1. Use Euclid's division algorithm to find HCF of :

4052,12576
2. Show that every positive odd integer is of the form $2 q+1$, for some integer q.

- Watch Video Solution

3. Show that every positive odd integer is of the form $4 q+1$ or $4 q+3$, where q is some integer.

- Watch Video Solution

4. A sweet seller has 420 kaju baths and 130 badam
barfis. She wants to stack them in such a way that
each stack has the same number and they take up the least area of the tray. What is the number that can be placed in each stack for this purpose ?

- Watch Video Solution

5. Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF $=$ Product of the two numbers. : 96 and 404
6. Find the LCM and HCF of the following integers by applying the prime factorisation method : 6, 72 and 120

- Watch Video Solution

7. Check whether 4^{n} can end with the digit 0 for any natural number n.

- Watch Video Solution

8. Prove that $5-\sqrt{3}$ is irrational.
9. Show that $3-\sqrt{2}$ is irrational.

- Watch Video Solution

Exercise

1. Use Euclid's division algorithm to find the HCF of :

135 and 225

- Watch Video Solution

2. Use Euclid's division algorithm to find the HCF of
: 196 and 38220

- Watch Video Solution

3. Use Euclid's division algorithm to find the HCF of
: 867 and 255.

- Watch Video Solution

4. Show that any positive odd integer is of the form
$6 q+1$ or $6 q+3$ or $6 q+5$, where q is some integer.
5. An army contingent of 616 members is to march behind an army band of 32 members in a parade.

The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march ?

- Watch Video Solution

6. Use Euclid's division lemma to show that the square of any positive integer is either of the form
$3 m$ or $3 m+1$ for some integer m.
7. Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 \mathrm{~m}, 9 \mathrm{~m}+$

1 or $9 m+8$.

- Watch Video Solution

8. Express each number as a product of its prime factors: 140
9. Express each number as a product of its prime factors: 156

- Watch Video Solution

10. Express each number as a product of its prime factors: 3825

- Watch Video Solution

11. Express each number as a product of its prime
factors: 5005
12. Express each number as a product of its prime factors: 7429

- Watch Video Solution

13. Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF = Product of the two numbers.: 26 and 91.
14. Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF = Product of the two numbers.: 510 and 92.

- Watch Video Solution

15. Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF = Product of the two numbers.: 336 and 54.
16. Find the LCM and HCF of the following integers
by applying the prime factorisation method. : 12,15 and 21 .

- Watch Video Solution

17. Find the LCM and HCF of the following integers
by applying the prime factorisation method. : 17,23
and 29.

- Watch Video Solution

18. Find the LCM and HCF of the following integers
by applying the prime factorisation method. : 8,9 and 25.

- Watch Video Solution

19. Given that $\operatorname{HCF}(306,657)=9$, find $\operatorname{LCM}(306,657)$.

- Watch Video Solution

20. Check whether 6^{n} can end with the digit 0 for
any natural number n.
21.

Explain
why
$7 \times 11 \times 13+13$ and $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$
are composite numbers.

- Watch Video Solution

22. There is a circular path around a sports field.

Sonia takes 18 minutes to drive one round of the
field, while Ravi takes 12 minutes for the same.

Suppose they both start at the same point and at
the same time, and go in the same direction. After
how many minutes will they meet again at the starting point ?

- Watch Video Solution

23. Prove that $\sqrt{5}$ irrational.

- Watch Video Solution

24. Prove that $3+2 \sqrt{5}$ irrational.

25. Prove that the following are irrationals : $\frac{1}{\sqrt{2}}$

- Watch Video Solution

26. Prove that the following are irrationals : $7 \sqrt{5}$

- Watch Video Solution

27. Prove that the following are irrationals : $6+\sqrt{2}$

- Watch Video Solution

28. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a nonterminating repeating decimal expansion : $\frac{13}{3125}$

- Watch Video Solution

29. Without actually performing the long division,
state whether the following rational numbers will
have a terminating decimal expansion or a nonterminating repeating decimal expansion : 17/8
30. Without actually performing the long division,
state whether the following rational numbers will
have a terminating decimal expansion or a nonterminating repeating decimal expansion : 64/455

- Watch Video Solution

31. Without actually performing the long division,
state whether the following rational numbers will
have a terminating decimal expansion or a non-
terminating repeating decimal expansion : 15/1600
32. Without actually performing the long division,
state whether the following rational numbers will
have a terminating decimal expansion or a nonterminating repeating decimal expansion : $\frac{29}{343}$

- Watch Video Solution

33. Without actually performing the long division,
state whether the following rational numbers will
have a terminating decimal expansion or a non-
terminating repeating decimal expansion: $\frac{23}{2^{1} 5^{2}}$
34. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a nonterminating repeating decimal expansion: $\frac{129}{2^{2} 5^{1} 7^{3}}$

- Watch Video Solution

35. Without actually performing the long division, state whether the following rational numbers will
have a terminating decimal expansion or a nonterminating repeating decimal expansion : 6/15
36. Without actually performing the long division,
state whether the following rational numbers will
have a terminating decimal expansion or a nonterminating repeating decimal expansion : 35/50

- Watch Video Solution

37. Without actually performing the long division ,
state whether the following rational numbers will
have a terminating decimal expansion or a nonterminating repeating decimal expansion : 77/210
38. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form $\frac{p}{q}$, what can you say about the prime factors of q ? :- 43.123456789 .

- Watch Video Solution

39. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are
rational, and of the form $\frac{p}{q}$, what can you say
about the prime factors of q ? :0.120120012000120000

- Watch Video Solution

40. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form $\frac{p}{q}$, what can you say about the prime factors of q ? :- $43 . \overline{123456789}$
