# ©゙" doubtnut India's Number 1 Education App 

## MATHS

## BOOKS - PSEB

## TRIANGLES

## Exercise

1. Fill in the blanks using the correct word given in brackets :- All circles are (congruent,similar)

## - Watch Video Solution

2. Fill in the blanks using the correct word given in brackets :- All

## - Watch Video Solution

3. Fill in the blanks using the correct word given in brackets :- All .......... Triangles are similar . (isosceles,equilateral).

## - Watch Video Solution

4. Fill in the blanks using the correct word given in brackets :- Two polygons of the same number of sides are similar, if :- their corresponding angles are........ (equal , proportional).

## - Watch Video Solution

5. Give two different examples of pair of ,- similar figures.
6. Give two different examples of pair of ,- non-similar figures.

## - Watch Video Solution

7. State whether the following quadrilaterals are similar or not :-


## - Watch Video Solution

8. In fig. (i) and (ii), $D E \| B C$. Find $E C$ in (i) and $A D$ in (ii).


## - Watch Video Solution

9. $E$ and $F$ are points on the sides $P Q$ and $P R$ respectively of a $\angle P Q R$. For each of the following cases, state whether EF || OR : $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$.

## - Watch Video Solution

10. $E$ and $F$ are points on the sides $P Q$ and $P R$ respectively of a $\angle P Q R$. For each of the following cases, state whether EF || OR : $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$.

## - Watch Video Solution

11. $E$ and $F$ are points on the sides $P Q$ and $P R$ respectively of a $\angle P Q R$. For each of the following cases, state whether EF || QR : $P Q=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$.

## D Watch Video Solution

12. In fig., $\mathrm{LM} \| \mathrm{CB}$, and $\mathrm{LN} \| \mathrm{CD}$. Prove that $\frac{A M}{A B}=\frac{A N}{A D}$.


## - Watch Video Solution

13. In fig. DE || AC, and DF || AE prove that $\frac{B F}{E F}=\frac{B E}{E C}$.

14. In Fig. 6.20. $D E \| O Q$ anti $D F|\mid O R$. Show that $E F \| Q R$.


## Fig. 6.20

## ( Watch Video Solution

15. In Fig, 6.21 , $A, B$ and $C$ are points on $O P, O Q$ and $O R$ respectively such that $A B \| P Q$ and $A C \| P R$. Show that $B C \| Q R$.


## Fig. 6.21

## - Watch Video Solution

16. Using Basic Proportionality theorem, prove thata line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in class IX).
17. Using converse of Basic Proportionality theorem prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

## D Watch Video Solution

18. $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point O. show that $\frac{A O}{B O}=\frac{C O}{D O}$.

## - Watch Video Solution

19. The diagonals of a quadrilateral $A B C D$ intersect each other at the point o Such that $\frac{A O}{B O}=\frac{C O}{D O}$, show that ABCD is trapezium.
20. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :


## - Watch Video Solution

21. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and
also write the pairs of similar triangles in the symbolic form :


## - Watch Video Solution

22. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :


## - Watch Video Solution

23. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :


## - Watch Video Solution

24. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and
also write the pairs of similar triangles in the symbolic form :


## - Watch Video Solution

25. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :


## - Watch Video Solution

26. In fig., $\triangle O D C-\triangle O B A, \angle B O C=125 \circ 0$ and $\angle C D O=70 \circ 0$. Find $\angle D O C, \angle D C O$ and $\angle O A B$.


## - Watch Video Solution

27. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point $\mathbf{O}$. Using a similarity criterion for
two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.


## - Watch Video Solution

28. In fig., $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$. Show that $\triangle P Q S \sim \triangle T Q R$.


- Watch Video Solution

29. S and T are points on sides PR and QR of $\triangle P Q R$ such that $\angle P=\angle R T S$.Show that $\triangle R P Q \sim \triangle R T S$.

- Watch Video Solution

30. In Fig. 6.37, if $\triangle A B E \cong \triangle A C D$, show that $\triangle A D E \sim \triangle A B C$.


## Fig. 6.37

31. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that :- $\triangle A E P \sim \triangle C D P$.


## - Watch Video Solution

32. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that :- $\triangle A B D \sim \triangle C B E$.


## - Watch Video Solution

33. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that :- $\triangle A E P \sim \triangle A D B$.


## - Watch Video Solution

34. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at the point P . Show that :- $\triangle P D C \sim \triangle B E C$.


## - Watch Video Solution

35. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and BE intersects CD at F . Show that $\triangle A B E \sim \triangle C F B$.

## - Watch Video Solution

36. In Fig., $A B C$ and $A M P$ are two right triangles, right angled at $B$ and M respectively. Prove that :- $\frac{C A}{P A}=\frac{B C}{M P}$.


## - Watch Video Solution

37. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and
$\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, show that :$\frac{C D}{G H}=\frac{A C}{F G}$.
38. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, show that :$\triangle D C B \sim \triangle H G E$.

## - Watch Video Solution

39. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, show that :$\triangle D C A \sim \triangle H G F$.

## - Watch Video Solution

40. In Fig., $E$ is a point on side CB produced of an isosceles triangle $A B C$ with $A B=A C$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle A B D \sim \triangle E C F$.


## - Watch Video Solution

41. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of
$\triangle P Q R$ (see Fig.). Show that $\triangle A B C \sim \triangle P Q R$.


## - Watch Video Solution

42. D is a point on the side BC of a triangle ABC such that $\angle A D C$
$=\angle B A C$. Show that $C A^{2}=\mathrm{CB} . \mathrm{CD}$.

## - Watch Video Solution

43. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of
$\triangle P Q R$ (see Fig.). Show that $\triangle A B C \sim \triangle P Q R$.


## D Watch Video Solution

44. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long.

Find the height of the tower.

## - Watch Video Solution

45. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \sim \triangle P Q R$, Prove that $\frac{A B}{P Q}=\frac{A D}{P M}$


## - Watch Video Solution

46. Let $\triangle A B C \sim \triangle D E F$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC .

## - Watch Video Solution

47. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point $O$. If $A B=2 C D$, find the ratio of the areas of triangles AOB and COD.
48. In Fig, ABCand DBC are Iwo triangles on the same base BC. If

AD intersects BC at O,show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$.


## Fig, 6.44

## - Watch Video Solution

49. If the areas of two similar triangles are equal, prove that they are congruent.
50. D, E and F are respectively the mid points of the sides $B C$, CA and AB of $\triangle A B C$. Determine the ratio of the areas of triangles DEF and $A B C$.

## - Watch Video Solution

51. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

## - Watch Video Solution

52. Prove that the areas of the equilateral triangle described on the side of a square is equal to half the area of the equilateral triangle described on one of its diagonal.
53. Tick the correct answer and justify : ABC and BDE are two equilateral triangles such that $D$ is the mid-point of $B C$. Ratio of the areas of triangles $A B C$ and $B D E$ is
A. 2:1
B. 1:2
C. 4:1
D. 1:4

## Answer:

## - Watch Video Solution

54. Tick the correct answer and justify : Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the

## ratio

A. 2:3
B. $4: 9$
C. 81:16
D. 16:81

## Answer:

## - Watch Video Solution

55. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse. :- $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
56. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse. :- $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$.

## - Watch Video Solution

57. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse. :- $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$.

## - Watch Video Solution

58. Sides of triangles are given below. Determine which of them
are right triangles. In case of a right triangle, write the length of its hypotenuse. :- $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$.

## - Watch Video Solution

59. $P Q R$ is a triangle right angled at $P$ and $M$ is a point on $Q R$ such that $\mathrm{PM} \perp \mathrm{QR}$. Show that $P M^{2}=\mathrm{QM} . \mathrm{MR}^{2}$.

## - Watch Video Solution

60. In fig., ABD is a triangle right angled at $A$ and $A C \perp B D$. Show that:- $A B^{2}=\mathrm{BC} . \mathrm{BD}$.

61. In fig., $A B D$ is a triangle right angled at $A$ and $A C \perp B D$. Show that:- $A C^{2}=B C . D C$.


## - Watch Video Solution

62. In fig., $A B D$ is a triangle right angled at $A$ and $A C \perp B D$. Show that:- $A D^{2}=\mathrm{BD} . \mathrm{CD}$.


## - Watch Video Solution

63. ABC is an isosceles triangle right angled at C . Prove that $A B^{2}$
$=2 A C^{2}$.

## - Watch Video Solution

64. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$,
prove that $A B C$ is right triangle.

## - Watch Video Solution

65. $A B C$ is an equilateral triangle ofside 2 a. Find each of its altitudes.

## - Watch Video Solution

66. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

## - Watch Video Solution

67. In fig., $O$ is a point in the interior of a triangle $A B C, O D \perp B C$, $\mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp$ AB. Show that:$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$


## - Watch Video Solution

68. In fig., $O$ is a point in the interior of a triangle $A B C, O D \perp B C$, $\mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp$ AB. Show that:-

$$
A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}
$$



## - Watch Video Solution

69. A ladder 10 m long reaches a window 8 m above the ground.

Find the distance of the foot of the ladder from base of the wall.

- Watch Video Solution

70. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

## - Watch Video Solution

71. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours ?

## D Watch Video Solution

72. Two poles of heights 6 m and 11 m stand on a plane ground. If
the distance between the feet of the poles is 12 m , find the
distance between their tops.

## - Watch Video Solution

73. $D$ and $E$ are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

## - Watch Video Solution

74. The perpendicular from A on side BC of a $\triangle A B C$ intersects $B C$ at $D$ such that $D B=3 C D$ (see Fig) Prove that
$2 A B^{2}=2 A C^{2}+B C^{2}$


- Watch Video Solution

75. In an equilateral triangle $A B C$. $D$ is a point on side $B C$ such that $\mathrm{BD}=1 / 3 \mathrm{BC}$. Prove that $9 A D^{2}=7 A B^{2}$.

## - Watch Video Solution

76. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

## - Watch Video Solution

77. Tick the correct answer and justify: In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}$,
$A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. The angle $B$ is ,
A. $120^{\circ}$
B. $60^{\circ}$
C. $90^{\circ}$
D. $45^{\circ}$

## Answer:

78. In Fig. 6.56, PS is the bisector of $\angle Q P R$ of $\triangle P Q R$. Prove that $\frac{Q S}{S R}=\frac{P Q}{P R}$


## Fig. 6.56

## - Watch Video Solution

79. In Fig, D is a point on hypotenuse AC of $\triangle A B C$, such that $B D \perp A C, \quad D M \perp B C \quad$ and $\quad D N \perp A B$. Prove that :-
$D M^{2}=D N . M C$


Fig. 6.57

- Watch Video Solution

80. In Fig, D is a point on hypotenuse AC of $\triangle A B C$, such that
$B D \perp A C, \quad D M \perp B C \quad$ and $\quad D N \perp A B$. Prove that :-
$D N^{2}=D M . A N$


Fig. 6.57

- Watch Video Solution

81. In fig., ABC is triangle in which $\angle A B C>90 \circ 0$ and $\mathrm{AD} \perp \mathrm{BC}$ produced, prove that $A C^{2}=A B^{2}+B C^{2}+2 B C . B D$.


Watch Video Solution
82. In fig., $A B C$ is a triangle in which $\angle A B C<90 \circ 0$, and $A D^{\prime} \perp \quad \mathrm{BC}$ produced, prove that

## $A C^{2}=A B^{2}+B C^{2}-2 B C . B D$.



## - Watch Video Solution

83. In fig., $A D$ is a median of a triangle $A B C$ and $A M \perp B C$.Prove
that :- $A C^{2}=A D^{2}+B C . D M+\left(\frac{B C}{2}\right)^{2}$.


## - Watch Video Solution

84. In fig., $A D$ is a median of a triangle $A B C$ and $A M \perp B C$.Prove that :- $A B^{2}=A D^{2}-B C . D M+\left(\frac{B C}{2}\right)^{2}$.


## - Watch Video Solution

85. In fig., $A D$ is a median of a triangle $A B C$ and $A M \perp B C$.Prove that :- $A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$.


## - Watch Video Solution

86. Prove that sum of squares of the diagonals of a parallelogram is equal to sum of squares of its sides.

## - Watch Video Solution

87. In fig., two chords AB and CD of a circle intersect each other at point $P$ (when produced) outside the circle prove :-


## D Watch Video Solution

88. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 $m$ above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out ? If she pulls in the string at the rate of 5 cm per second, what will the horizontal distance of the fly from her after 12
seconds?


## ( Watch Video Solution

## Example

1. if a line intersects sides AB and AC of a $\triangle A B C$ at D and E respectively and is parallel to BC , prove that $\frac{A D}{A B}=\frac{A E}{A C}$ (see

Fig. 6,13).

C

## Fig. 6.13

## - Watch Video Solution

2. $A B C D$ is a trapezium with $A B I I D C, E$ and $F$ are paints on nonparallel sides $A D$ and $B C$ respectively such that $E F$ is parallel to $A B$

Show that $\frac{A E}{E D}=\frac{B F}{F C}$.


## Fig. 6.14

## D Watch Video Solution

3. In $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle P S T=\angle P R Q$. Prove that PQR is an isosceles triangle.

Fig. 6.16

- Watch Video Solution

4. Observe Fig. 6.30 and then find $\angle P$.


Fig. 6.30

## - Watch Video Solution

5. In Fig, $\mathrm{OA} . \mathrm{OB}=\mathrm{OC}$. OD . Show that $\angle A=\angle C$ and $a n l \geq B=\angle D$.

## Fig. 6.31 B

## - Watch Video Solution

6. A girl of height 90 cm cm is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the
ground, find the length of her shadow after 4 seconds.


## Fig. 6.32

## - Watch Video Solution

7. In Fig, the line segment XY is parallel to side AC of $\triangle A B C$ and it divides the triangle into two parts of equal areas. Find the ratio
$\frac{A X}{A B}$.


## Fig. 6.43

- Watch Video Solution

8. In Fig. 6.48, $\angle A C B=90^{\circ}$ and $C D \perp A B$. Prove that $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$.


## Fig. 6.48

## - Watch Video Solution

9. A ladder is placed against a wall such that its foot is at a distance of 2.5 m from the wall and its top reaches a window 6 m above the ground. Find the length of the ladder.

## - Watch Video Solution

10. In Fig if $A D \perp B C$, prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$.


## Fig. 6.50

## - Watch Video Solution

11. $B L$ and $C M$ are medians of a triangle $A B C$ right angled at $A$. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$.


## Fig. 6.51

## - Watch Video Solution

12. $O$ is any point inside a rectangle $A B C D$ (see Fig. 6.52). Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$.


$$
\text { Fig. } 6.52
$$

- Watch Video Solution

