đず doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - VGS BRILLIANT CHEMISTRY

(TELUGU ENGLISH)

ELECTRIC CURRENTT

Exercise

1. The net charge on a current carrying conductor is
A. Zero
B. Constant
C. varying
D. Negative

Answer:

D Watch Video Solution

2. A steady current is passing through a conductor of non-uniform cross-section . The
net quantity of charge crossing any crosssection per second is
A. Independent of area of cross-section
B. Directly proportional to the length of
conductor
C. Directly proportional to the area of cross

- section
D. Inversely proportional to the length of
conductor

3. If a current of 300 mA is following in a conductor, then the no.of electrons passed through the conductor in 4 min is (charge on an electron $=1.6 \times 10^{-19} \mathrm{C}$
A. 4.5×10^{20}
B. 9.0×10^{20}
C. 4.5×10^{18}
D. 9.0×10^{18}

Answer:

D Watch Video Solution

4. At room temperature, copper has free electron density of $8.4 \times 10^{28} m^{-3}$. The electron drift velocity in a copper conductor of cross-sectional area of $10^{-6} m^{2}$ and carrying a current of 5.4 A , will be
A. $4 \mathrm{~m}-s^{-1}$
B. $0.4 \mathrm{~m}-s^{-1}$

C. $4 \mathrm{~cm}-\mathrm{s}^{-1}$

D. $0.4 \mathrm{~mm}-\mathrm{s}^{-1}$

Answer:

D Watch Video Solution

5. The resistance of an incandescent lamp is

A. Greater when switched ON
B. Smaller when switched ON
C. Greater when switched OFF

D. same whether it is switched OFF or ON

Answer:

D Watch Video Solution

6. Three copper wires have lengths and crosssectional areas of (I and A),(2land A / 2) and
(I/2 and 2A) . Resistance will be minimum in
A. Wire of cross - sectional area A
B. Wire of cross - sectional area $A / 2$
C. Wire of cross - sectional area 2 A
D. same in all three cases

Answer:

- Watch Video Solution

7. If the length of a conductor is halved,then

its conductanc will be
A. halved
B. Doubled

C. Quadrupled

D. unchanged

Answer:

D Watch Video Solution

8. What length of the wire (specific resistance
$48 \times 10^{-8} \Omega-m$) is needed to make a resistance of 4.2Ω ?
A. $1 \cdot 1 \mathrm{~m}$
B. $2 \cdot 1 \mathrm{~m}$
C. $3 \cdot 1 \mathrm{~m}$
D. $4 \cdot 1 \mathrm{~m}$

Answer:

- Watch Video Solution

9. A wire of length I is drawn such that its diameter is reduced to half of its original diameter. If the initial resistance of the wire were 10Ω, its new resistance would be
A. 40Ω
B. 80Ω
C. 120Ω
D. 160Ω

Answer:

D Watch Video Solution

10. A uniform wire of resistance R is uniformly compressed along its length, unitl its radius
becomes n times the original radius. Now resistance of the wire becomes.

$$
\begin{aligned}
& \text { A. } \frac{R}{n^{4}} \\
& \text { B. } \frac{R}{n^{2}} \\
& \text { C. } \frac{R}{n} \\
& \text { D. } \mathrm{nR}
\end{aligned}
$$

Answer:

D Watch Video Solution

11. A series combination of two resistors 1Ω each is connected to a 12 V battery of internal resistance 0.4Ω The current flowing through it is
A. 10A
B. 7.5 A
C. 5A
D. 2.5 A

Answer:
12. An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If lengths and radii of the wires are in the ratio of $4: 3$ and 2
$: 3$, then ratio of the currents passing through the wires will be
A. 0.12569444444444
B. 0.084027777777778
C. 0.04375

D. 0.043055555555556

Answer:

D Watch Video Solution

13. What will be the resistance between P and

Q in the following circuit?
A. 2Ω
B. 3Ω
C. 4Ω

D. 5Ω

Answer:

D Watch Video Solution

14. A_{3} volt battery with negligible internal
resistance is connected in a circuit as shown in
the figure. The current (1) in circuit will be
A. $\frac{1}{3} A$
B. 1A

C. $1 \cdot 5 \mathrm{~A}$

D. 2 A

Answer:

- Watch Video Solution

15. A current of 2 A flows in a system as shown
in the figure. The potential difference between
A and $\mathrm{B}\left(V_{A}-V_{B}\right)$ will be
A. 1 v
B. 2v
C. 3V
D. 4 V

Answer:

D Watch Video Solution

16. The current flowing through a lamp , marked as 60 W and 240 V is
A. $0 \cdot 25 \mathrm{~A}$
B. 1A
C. $2 \cdot 5 \mathrm{~A}$
D. 5 A

Answer:

D Watch Video Solution

17. The power of an electric bulb marked as 40

W and 200 V used in a circuit of supply voltage

100 V will be
A. 100 W
B. 40 W
C. 20 W
D. 10 W

Answer:

D Watch Video Solution

18. In India, electricity is supplied for domestic use at 220 V . It is supplied at 110 V in USA. If the resistance of a 60 W bulb for use in India is R ,
then resistance of a 60 W bulb for use in USA

will be

A. R
B. 2 R
C. $\frac{R}{2}$
D. $\frac{R}{4}$

Answer:
(Watch Video Solution
19. The net charge on a current carrying conductor is
A. Zero
B. Constant
C. varying

D. Negative

Answer:

D Watch Video Solution
20. A steady current is passing through a conductor of non-uniform cross-section . The net quantity of charge crossing any crosssection per second is
A. Independent of area of cross-section
B. Directly proportional to the length of
conductor
C. Directly proportional to the area of cross

- section

D. Inversely proportional to the length of

conductor

Answer:

D Watch Video Solution

21. If a current of 300 mA is following in a conductor, then the no.of electrons passed through the conductor in 4 min is (charge on an electron $=1.6 \times 10^{-19} C$
A. 4.5×10^{20}
B. 9.0×10^{20}
C. 4.5×10^{18}
D. 9.0×10^{18}

Answer:

D Watch Video Solution

22. At room temperature, copper has free electron density of $8.4 \times 10^{28} m^{-3}$. The electron drift velocity in a copper conductor of
cross-sectional area of $10^{-6} m^{2}$ and carrying a current of 5.4 A , will be
A. $4 \mathrm{~m}-s^{-1}$
B. $0.4 m-s^{-1}$
C. $4 \mathrm{~cm}-s^{-1}$
D. $0.4 \mathrm{~mm}-\mathrm{s}^{-1}$

Answer:
(Watch Video Solution
23. The resistance of an incandescent lamp is
A. Greater when switched ON
B. Smaller when switched ON
C. Greater when switched OFF
D. same whether it is switched OFF or ON

Answer:

D Watch Video Solution

24. Three copper wires have lengths and crosssectional areas of (I and A),(2land A / 2) and
(I/2 and 2A) . Resistance will be minimum in
A. Wire of cross - sectional area A
B. Wire of cross - sectional area $A / 2$
C. Wire of cross - sectional area 2A
D. same in all three cases

Answer:

D Watch Video Solution
25. If the length of a conductor is halved, then
its conductanc will be
A. halved
B. Doubled
C. Quadrupled
D. unchanged

Answer:
(Watch Video Solution
26. What length of the wire (specific resistance
$48 \times 10^{-8} \Omega-m$) is needed to make a resistance of 4.2Ω ?
A. $1 \cdot 1 \mathrm{~m}$
B. $2 \cdot 1 \mathrm{~m}$
C. $3 \cdot 1 \mathrm{~m}$
D. $4 \cdot 1 \mathrm{~m}$

Answer:

27. A wire of length I is drawn such that its diameter is reduced to half of its original diameter. If the initial resistance of the wire were 10Ω, its new resistance would be
A. 40Ω
B. 80Ω
C. 120Ω
D. 160Ω

Answer:

28. A uniform wire of resistance R is uniformly

compressed along its length, unitl its radius
becomes n times the original radius. Now resistance of the wire becomes.

$$
\begin{aligned}
& \text { A. } \frac{R}{n^{4}} \\
& \text { B. } \frac{R}{n^{2}} \\
& \text { C. } \frac{R}{n} \\
& \text { D. } \mathrm{nR}
\end{aligned}
$$

29. A series combination of two resistors 1Ω
each is connected to a 12 V battery of internal
resistance 0.4Ω The current flowing through it is
A. 10A
B. 7.5 A
C. 5A
D. 2.5 A

Answer:

D Watch Video Solution

30. An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If lengths and radii of the wires are in the ratio of $4: 3$ and 2
$: 3$, then ratio of the currents passing through
the wires will be
A. 0.12569444444444

B. 0.084027777777778

C. 0.04375
D. 0.043055555555556

Answer:

D Watch Video Solution

31. What will be the resistance between P and
Q in the following circuit?
A. 2Ω
B. 3Ω
C. 4Ω
D. 5Ω

Answer:

D Watch Video Solution

32. A_{3} volt battery with negligible internal resistance is connected in a circuit as shown in the figure. The current (1) in circuit will be
A. $\frac{1}{3} A$
B. 1 A
C. $1 \cdot 5 \mathrm{~A}$
D. 2A

Answer:

D Watch Video Solution

33. A current of 2 A flows in a system as shown
in the figure. The potential difference between
A and $\mathrm{B}\left(V_{A}-V_{B}\right)$ will be
A. 1v
B. 2v
C. 3V
D. 4 V

Answer:

D Watch Video Solution

34. The current flowing through a lamp, marked as 60 W and 240 V is
A. $0 \cdot 25 \mathrm{~A}$
B. 1A
C. $2 \cdot 5 \mathrm{~A}$
D. 5 A

Answer:

D Watch Video Solution

35. The power of an electric bulb marked as 40 W and 200 V used in a circuit of supply voltage
A. 100 W
B. 40 W
C. 20 W
D. 10 W

Answer:

D Watch Video Solution

36. In India, electricity is supplied for domestic use at 220 V . It is supplied at 110 V in USA. If the resistance of a 60 W bulb for use in India is R ,
then resistance of a 60 W bulb for use in USA

will be

A. R
B. 2 R
C. $\frac{R}{2}$
D. $\frac{R}{4}$

Answer:

D Watch Video Solution

