

India's Number 1 Education App

CHEMISTRY

BOOKS - VGS BRILLIANT CHEMISTRY (TELUGU ENGLISH)

ELECTRIC CURRENTT

1. The net charge on a current carrying conductor is

A. Zero

B. Constant

C. varying

D. Negative

Answer:

Watch Video Solution

2. A steady current is passing through a conductor of non-uniform cross-section . The

net quantity of charge crossing any crosssection per second is

A. Independent of area of cross-section

B. Directly proportional to the length of

conductor

C. Directly proportional to the area of cross

section

D. Inversely proportional to the length of

conductor

3. If a current of 300 mA is following in a conductor, then the no.of electrons passed through the conductor in 4 min is (charge on an electron $= 1.6 \times 10^{-19}C$

A. $4.5 imes10^{20}$

 $\texttt{B.}\,9.0\times10^{20}$

 $\text{C.}~4.5\times10^{18}$

D. $9.0 imes10^{18}$

Answer:

4. At room temperature, copper has free electron density of $8.4 \times 10^{28} m^{-3}$. The electron drift velocity in a copper conductor of cross-sectional area of $10^{-6}m^2$ and carrying a current of 5.4 A, will be

```
A. 4m-s^{-1}
```

B. 0.4m- s^{-1}

C. 4 cm-
$$s^{-1}$$

D. 0.4 mm- s^{-1}

Answer:

5. The resistance of an incandescent lamp is

A. Greater when switched ON

B. Smaller when switched ON

C. Greater when switched OFF

D. same whether it is switched OFF or ON

Answer:

Watch Video Solution

6. Three copper wires have lengths and crosssectional areas of (I and A) ,(2Iand A / 2) and (I/2 and 2A) . Resistance will be minimum in

A. Wire of cross – sectional area A

B. Wire of cross – sectional areaA/2

C. Wire of cross – sectional area 2A

D. same in all three cases

Answer:

7. If the length of a conductor is halved, then

its conductanc will be

A. halved

B. Doubled

C. Quadrupled

D. unchanged

Answer:

8. What length of the wire (specific resistance

 $48 imes 10^{-8}\Omega-m$) is needed to make a resistance of 4.2Ω ?

A. $1 \cdot 1m$

 $\mathsf{B.2}\cdot 1\mathsf{m}$

 $\text{C.} \ 3 \cdot 1 \text{ m}$

 $\mathsf{D.4}\cdot 1\mathsf{m}$

Answer:

Watch Video Solution

9. A wire of length I is drawn such that its diameter is reduced to half of its original diameter. If the initial resistance of the wire were 10Ω , its new resistance would be

A. 40Ω

B. 80Ω

C. 120 Ω

D. 160 Ω

Answer:

Watch Video Solution

10. A uniform wire of resistance R is uniformly compressed along its length, unitl its radius

becomes n times the original radius. Now

resistance of the wire becomes.

A.
$$\frac{R}{n^4}$$

B. $\frac{R}{n^2}$
C. $\frac{R}{n}$

D. nR

Answer:

11. A series combination of two resistors 1 Ω each is connected to a 12 V battery of internal resistance 0.4Ω The current flowing through it

is

A. 10A

B. 7.5 A

C. 5A

D. 2.5 A

Answer:

12. An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If lengths and radii of the wires are in the ratio of 4 : 3 and 2 : 3 , then ratio of the currents passing through

the wires will be

A. 0.1256944444444

B. 0.08402777777778

C. 0.04375

D. 0.04305555555556

Answer:

Watch Video Solution

13. What will be the resistance between P and Q in the following circuit ?

A. 2 Ω

B. 3Ω

C. 4Ω

D. 5Ω

Answer:

Watch Video Solution

14. A_3 volt battery with negligible internal resistance is connected in a circuit as shown in the figure. The current (1) in circuit will be

A.
$$\frac{1}{3}A$$

 $\mathsf{C.1}\cdot\mathsf{5A}$

D. 2A

Answer:

15. A current of 2A flows in a system as shown

in the figure. The potential difference between

A and B $(V_A - V_B)$ will be

A. 1v

B. 2v

C. 3V

D. 4V

Answer:

Watch Video Solution

16. The current flowing through a lamp , marked as 60 W and 240 V is

A. $0\cdot25\text{A}$

B. 1A

 $\mathrm{C.}\,2\cdot5\mathrm{A}$

D. 5A

Answer:

Watch Video Solution

17. The power of an electric bulb marked as 40W and 200 V used in a circuit of supply voltage100 V will be

A. 100 W

B. 40 W

C. 20 W

D. 10W

Answer:

Watch Video Solution

18. In India, electricity is supplied for domestic use at 220V. It is supplied at 110 V in USA. If the resistance of a 60 W bulb for use in India is R ,

then resistance of a 60 W bulb for use in USA

will be

A. R

B. 2R

C.
$$\frac{R}{2}$$

D. $\frac{R}{4}$

Answer:

19. The net charge on a current carrying conductor is

A. Zero

B. Constant

C. varying

D. Negative

Answer:

20. A steady current is passing through a conductor of non-uniform cross-section . The net quantity of charge crossing any cross-section per second is

A. Independent of area of cross-section

B. Directly proportional to the length of

conductor

C. Directly proportional to the area of cross

section

D. Inversely proportional to the length of

conductor

Answer:

21. If a current of 300 mA is following in a conductor, then the no.of electrons passed through the conductor in 4 min is (charge on an electron $= 1.6 \times 10^{-19}C$

A. $4.5 imes10^{20}$

 $\mathsf{B.9.0} imes 10^{20}$

 $\text{C.}~4.5\times10^{18}$

D. $9.0 imes10^{18}$

Answer:

22. At room temperature, copper has free electron density of $8.4 imes 10^{28} m^{-3}$. The electron drift velocity in a copper conductor of

cross-sectional area of $10^{-6}m^2$ and carrying a

current of 5.4 A, will be

A. 4m-
$$s^{\,-1}$$

- B. 0.4m- s^{-1}
- C. 4 cm- s^{-1}
- D. 0.4 mm- s^{-1}

Answer:

23. The resistance of an incandescent lamp is

- A. Greater when switched ON
- B. Smaller when switched ON
- C. Greater when switched OFF
- D. same whether it is switched OFF or ON

Answer:

24. Three copper wires have lengths and crosssectional areas of (I and A) ,(2land A / 2) and (I/2 and 2A) . Resistance will be minimum in

A. Wire of cross – sectional area A

B. Wire of cross – sectional area $A\,/\,2$

C. Wire of cross – sectional area 2A

D. same in all three cases

Answer:

25. If the length of a conductor is halved, then

its conductanc will be

A. halved

B. Doubled

C. Quadrupled

D. unchanged

Answer:

26. What length of the wire (specific resistance $48 imes 10^{-8}\Omega - m$) is needed to make a resistance of 4.2Ω ?

A. $1 \cdot 1m$

 $\mathrm{B.}\,2\cdot1\mathrm{m}$

 $\text{C.} \ 3 \cdot 1 \text{ m}$

 $\text{D.}\,4\cdot1\text{m}$

Answer:

27. A wire of length I is drawn such that its diameter is reduced to half of its original diameter. If the initial resistance of the wire were 10Ω , its new resistance would be

A. 40Ω

B. 80Ω

C. 120 Ω

D. 160 Ω

Answer:

28. A uniform wire of resistance R is uniformly compressed along its length, unitl its radius becomes n times the original radius. Now resistance of the wire becomes.

A.
$$\frac{R}{n^4}$$

B. $\frac{R}{n^2}$
C. $\frac{R}{n}$

D. nR

Answer:

29. A series combination of two resistors 1 Ω each is connected to a 12 V battery of internal resistance 0.4Ω The current flowing through it is

A. 10A

- B. 7.5 A
- C. 5A

D. 2.5 A

Answer:

30. An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If lengths and radii of the wires are in the ratio of 4 : 3 and 2 : 3 , then ratio of the currents passing through the wires will be

A. 0.1256944444444

B. 0.08402777777778

C. 0.04375

D. 0.04305555555556

Answer:

Watch Video Solution

31. What will be the resistance between P and

Q in the following circuit ?

A. 2 Ω

B. 3Ω

C. 4Ω

D. 5 Ω

Answer:

Watch Video Solution

32. A_3 volt battery with negligible internal resistance is connected in a circuit as shown in the figure. The current (1) in circuit will be

A.
$$rac{1}{3}A$$

B. 1A

 $\mathrm{C.1}\cdot\mathrm{5A}$

D. 2A

Answer:

33. A current of 2A flows in a system as shown in the figure. The potential difference between A and B $(V_A - V_B)$ will be A. 1v

B. 2v

C. 3V

D. 4V

Answer:

34. The current flowing through a lamp , marked as 60 W and 240 V is

A. $0\cdot 25A$

B. 1A

 $\mathrm{C.}~2\cdot5\mathrm{A}$

D. 5A

Answer:

35. The power of an electric bulb marked as 40

W and 200 V used in a circuit of supply voltage

100 V will be

A. 100 W

B. 40 W

C. 20 W

D. 10W

Answer:

Watch Video Solution

36. In India, electricity is supplied for domestic use at 220V. It is supplied at 110 V in USA. If the resistance of a 60 W bulb for use in India is R ,

then resistance of a 60 W bulb for use in USA

will be

A. R

B. 2R

C.
$$\frac{R}{2}$$

D. $\frac{R}{4}$

Answer: