©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - UNITED BOOK HOUSE

Application of Trigonnometric Ratios :

Heights of Distance

Exercise

1. Multiple Choice Questions (MCQ) If the
length of the shadow of a 13 metre high palm
tree is $13 \sqrt{3}$ metre, then the angle of elevation of the sun is
A. 30°
B. 45°
C. 60°
D. 90°

Answer:
(Watch Video Solution

2. If the length of the shadow of a pillar is

 equal to the length of the pillar, then the angle of elevation of the sun isA. 30°
B. 45°
C. 60°
D. 90°

Answer:

- Watch Video Solution

3. If the angle of elevation of the Sun is 60°,
then the length of the shadow of a vertical pole of length h metre is
A. $\frac{h}{\sqrt{3}}$ metre
B. $h \sqrt{3}$ metre
C. $\sqrt{3} h m e t r e$
D. $\sqrt{\frac{h}{/}} 3$ metre

Answer:
4. A ladder is placed against a wall which is inclined at an angle 60° with the ground. The foot of the ladder is 4.6 m . Away from the wall. Then the length of the ladder is
A. 9.1 metre
B. 9.2 metre
C. 9.3 metre
D. 9.4 metre

Answer:

5. A boy is flying a kite by a string. If the kite is
at a height of 120 metres from the ground and
the string makes an angle, 30° with the horizontal then the length of the string is
A. 100metre
B. 120 metre
C. 180metre
D. 240 metre.

Answer:

D Watch Video Solution

6. If the angle of elevation of a kite is 60° and
the length of the string is $80 \sqrt{3}$ metre, then the height of the kite from the ground is
A. 80metre
B. 100metre
C. $40 \sqrt{3}$ metre
D. 120 metre .

Answer:

D Watch Video Solution

7. The height of the mobile tower is $40 \sqrt{3}$ metre. The angle of elevation of the top of the tower from a point a distance 120 metre from the foot of the tower is
A. 30°
B. 45°
C. 60°

D. none of these.

Answer:

D Watch Video Solution

8. If the ratio between langth of shadow of a palm tree and its height is $1: \sqrt{3}$, then the angle of elevation of the sum is
A. 30°
B. 45°
C. 60°
D. none of these.

Answer:

D Watch Video Solution

9. An observer of 1.6 m tall is $20 \sqrt{3}$ away from a tower. The angle of elevation, from his eyes to the top of the tower is 30°. The heights of the tower is
A. 19.6 metre
B. 20.6 metre
C. 21.6 metre
D. 22.3 metre.

Answer:

D Watch Video Solution

10. The shadow of a tower is 16 metre when
the angle of elevation of the sun is 30°. The
length of the shadow when the sun's elevation
is 60° will be
A. 4 metre
B. 4.5 metre
C. 5.3 metre
D. 6 metre.

Answer:
(Watch Video Solution
11. The angle of elevation of the sun, when the
length of the shadow of a tree $\sqrt{3}$ times the height of the tree is
A. 30°
B. 60°
C. 45°
D. 90°

Answer:

D Watch Video Solution
12. An observer of 1.6 m tall is $20 \sqrt{3}$ away from
a tower. The angle of elevation, from his eyes
to the top of the tower is 30°. The heights of the tower is
A. 24.7 m
B. 23.2 m
C. 21.6 metre
D. none of these.

Answer:

13. When a point is observed, the angle formed
by the line of sight with the horizontal level
where the point being viewedis above the horizontal plane is known as
A. Angle is known as
B. Angle of depression
C. Angle of elevation
D. none of these.

Answer:

D Watch Video Solution

14. When we lower our head to look at the object, the angle formed by the line of sight with horizontal is known as
A. obtuse angle
B. Angle of depression
C. acute angle
D. angle of elevation

Answer:

- Watch Video Solution

15. When the length of the shadow of a pillar
is equal to its height, the elevation at source
of sight is
A. 30°
B. 45°
C. 60°
D. 90°

Answer:

- Watch Video Solution

16. The tops of two poles of height 10 m and 18
m are connected with wire. If wire makes an
angle of 30° with horizontal, the length of
wire is
A. 10 m
B. 12 m
C. 16 m

D. 18 m

Answer:

D Watch Video Solution

17. If the angle of elevation of the top of a tower from two points distant a and b from
the base and in the same straight line with it are comple mentary, then the height of the tower is
A. $a b$
B. $\sqrt{a} b$
C. a / b
D. $\sqrt{\frac{a}{b}}$

Answer:

- Watch Video Solution

18. If the angles of elevation of a tower from
two points distance a and $\mathrm{b}(a>b)$ from its
foot and in the same straight line from it are
30° and 60°, then the height of the towers
A. $\sqrt{a}+b$
B. $\sqrt{a}-b$
C. $\frac{\sqrt{a}}{b}$
D. $\sqrt{a} b$

Answer:

D Watch Video Solution

19. Two persons are a metres a part and the height of one is double that of the other. If from the middle point of the line joining their
feet, an observer finds the angular elevation of
their tops to be complementary then the height of the shorten post is
A. $a / 2$
B. $\frac{a}{2 \sqrt{2}}$
C. (a)/(sqrt2)'
D. $a \sqrt{2}$

Answer:

D Watch Video Solution
20. The angle of elevation of a cloud from a point 200 m above a lake is 30° and the angle of depression of its reflection in the lake is
45°. Find the height of the cloud from the lake.
A. $h \tan \left(45^{\circ}+\theta\right)$
B. $h \cot \left(45^{\circ}+\theta\right)$
C. $h \cot \left(45^{\circ}-\theta\right)$
D. $h \tan \left(45^{\circ}-m\right)$
21. A tower subtends an angle of 30° at a point on the same level as its foot. At a second point h metres above the first, the depression of the foot, of the tower is 60°. The height of the tower is
A. $\mathrm{h} / 2 \mathrm{~m}$
B. $\sqrt{3} h m$
C. $\mathrm{h} / 3 \mathrm{~m}$
D. $\frac{h}{\sqrt{3}} m$

Answer:

D Watch Video Solution

22. From a light house the angles of depression of two ships on opposite sides of the light house are observed to be 30° and
45°. If the height of the light house is h metres, the distance between the ships is
A. $(\sqrt{3}+1) h$
B. $(\sqrt{3}-1) h$
C. $\sqrt{3} h$
D. $1+\left(1+\frac{1}{\sqrt{3}}\right) h$

Answer:

D Watch Video Solution

23. The angle of elevation of the top of a tower standing on a horizontal plane from a point A is alpha. After walking a distance d towards the foot of the tower the angle of elevation is
found to be beta. The height of the tower is

$$
\begin{aligned}
& \text { A. } \frac{d}{\tan \beta+\tan \alpha} \\
& \text { B. } \frac{d}{\tan \beta-\tan \alpha} \\
& \text { C. } \frac{d}{\cot \beta+\cot \alpha} \\
& \text { D. } \frac{d}{\cot \alpha-\cot \beta}
\end{aligned}
$$

Answer:

D Watch Video Solution

24. It is found that on walking x metres towards a chimney in a horizontal line through its base, the elevation of its top changes from 30° to 60°. The height of the chimney is
A. $3 \sqrt{2} x$
B. $2 \sqrt{3} x$
C. $\frac{\sqrt{3}}{2} x$
D. $\frac{2}{\sqrt{3}} x$
25. From the top of a cliff 25 m high the angle of elevation of a tower is found to be equal to the angle of depression of the foot of the lower. The height of the tower is \qquad
A. 25 m
B. 50 m
C. 75 m
D. 100 m

Answer:

D Watch Video Solution

26. Find the angle of depression of a boat from the bridge at a horizontal distance of 25 m from the bridge, if the height of the bridge is $25 \sqrt{3} \mathrm{~m}$
A. 30°
B. 45°
C. 60°

D. none of these.

Answer:

D Watch Video Solution

27. In the figure D is the midpoint of $B C$,
$\angle C A B=\alpha, \angle D A B=\beta$ then $\tan \alpha: \tan \beta$ is equal to
A. $2: 1$
B. 1:2
C. 1:1
D. 1:3

Answer:

D Watch Video Solution

28. The length of the shadow of a tower standing on level ground is found to be $2 x$ metres longer when the sun's elevation is 30°
than when it was 45°. The height of the tower
in metres is
A. $(\sqrt{3}+1) x$
B. $(\sqrt{3}-1) x$
C. $2 \sqrt{3} x$
D. $2 \sqrt{3} x$

Answer:
(Watch Video Solution
29. The angle of elevation of a cloud from a point 200 m above a lake is 30° and the angle of depression of its reflection in the lake is
45°. Find the height of the cloud from the lake.
A. $\frac{2 h}{\tan \alpha-\tan \beta}$
B. $\frac{2 h \sec \alpha}{\tan \alpha-\tan \beta}$
C. $\frac{2 h \sec \alpha}{\tan \beta-\tan \alpha}$
D. none of these.

Watch Video Solution

