©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - UNITED BOOK HOUSE

MISCELLANEOUS EXERCISE

Exercise

1. Solve : $42 x^{2}-41 x-20=0$.
2. Solve: $(x-2)(x-4)=\frac{45}{22^{2}}$

- Watch Video Solution

3.

Solve:
$\left.\frac{x^{2}-a x}{b}+\frac{x^{2}-b x}{a}+\frac{x^{2}-3 a x-3 b x}{a+b}=0\right]$

- Watch Video Solution

4. When a group of soldiers are arranged in 4 ddep hollow squares the number of soldiers in the front row is 16 more than the number of soldiers in the
front row when they are arranged in a perfect square. Find the number of soldiers.

- Watch Video Solution

5. The present age of father is the squre of present age of son. After some yearts when the age fo son is half the present age of fater, then age of father will be 8 times the present age of son. Find the present age of Father.
6. If the roots of the equation
$a(b-c) x^{2}+b(c-a) x+c(a-b)=0 \quad$ are
equal,then a, b, c are in

- Watch Video Solution

7. If the difference of the roots of the equation $x^{2}-p x+q=0 \quad$ is 1 , then show that $p^{2}+4 q^{2}=(1+2 q)^{2}$.
8. If the roots of the equation $a x^{2}+b x+c=0$ are
α and β then show that $\frac{1}{a \alpha+b}+\frac{1}{a \beta+b}=\frac{b}{a c}$.

- Watch Video Solution

9. If $(a+b+c) p=(b+c-a) q=(c+a-b) r=(a+b-c) s$, then show that $q r s=p(q r+r s+q s)$.

- Watch Video Solution

10. If $a+\frac{1}{b}=1, b+\frac{1}{c}=1$, then show that $\mathrm{abc}+1=$ 0
11. If $\frac{x^{2}-y z}{a}=\frac{y^{2}-z x}{b}=\frac{z^{2}-x y}{c}$, show that $(a+b+c)(x+y+z)=(a x+b y+c z)$.

- Watch Video Solution

12. If $a x^{2}+b x y+c y^{2}=0$, find $\mathrm{x}: \mathrm{y}$.

- Watch Video Solution

13.6 is the mean proportional between two numbers
x ad y and 48 is the third proportional of x and y. Find
the numbers.

- Watch Video Solution

14. If $\frac{x^{3}+3 x y^{2}}{y^{3}+3 x^{2} y}=\frac{63}{62}$ show that $\mathrm{x}: \mathrm{y}=3: 2$.

- Watch Video Solution

15. If $(\mathrm{a}+\mathrm{c}):(\mathrm{b}+\mathrm{c})=\left(\frac{a}{b}+2\right):\left(\frac{b}{a}+2\right)$ then show that $(\mathrm{a}-\mathrm{c}):(\mathrm{b}-\mathrm{c})=a^{2}: b^{2}$.

Watch Video Solution

16. If $\frac{5 a-3 b}{a}=\frac{4 a+b-2 c}{a+4 b-2 c}=\frac{a+2 b-3 c}{4 a-4 c}$, then show that $6 \mathrm{a}=4 \mathrm{~b}=3 \mathrm{c}$.

- Watch Video Solution

17.

$(x+y+z)(y+z-x)(z+x-y)(x+y-z) \propto x^{2} y^{2}$
then show that either $x^{2}+y^{2}=z^{2}$ or
$x^{2}+y^{2}-z^{2} \propto x y$.

- Watch Video Solution

18. If $\frac{1}{x}-\frac{1}{y} \propto \frac{1}{y-x}$ then show that $\frac{x}{y}$ is constant.

Watch Video Solution

19.

Simplify:
$\frac{1}{\sqrt{11-2 \sqrt{30}}}-\frac{3}{\sqrt{7}-2 \sqrt{10}}-\frac{4}{\sqrt{8+4 \sqrt{3}}}$

D Watch Video Solution

20. Find the square roots of-
$8+2 \sqrt{2}-2 \sqrt{5}-2 \sqrt{10}$
21. Find the square roots of-
$1+x^{2}+\sqrt{1+x^{2}+x^{4}}$

D Watch Video Solution
22. If $2 x=\sqrt{a}+\frac{1}{\sqrt{a}}$. Show that
$\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}(a-1)$
(D) Watch Video Solution
23.
$\left(x+\sqrt{x^{2}-b c}\right)\left(y+\sqrt{y^{2}-c a}\right)\left(z+\sqrt{z^{2}-a b}\right)$
$=$
$\left(x-\sqrt{x^{2}-b c}\right)\left(y-\sqrt{y^{2}-c a}\right)\left(z-\sqrt{z^{2}-a b}\right)$
prove that the values of both sides are equal to \pm $a b c$.

- Watch Video Solution

24. If $x=\frac{\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}-b^{2}}}{\sqrt{a^{2}+b^{2}}-\sqrt{a^{2}-b^{2}}}$ show that
$b^{2} x^{2}-2 a^{2} x+b^{2}=0$.
25.

$x>y$
prove
that
$\sqrt{y+\sqrt{2 x y-x^{2}}}+\sqrt{y-\sqrt{2 x y-x^{2}}}=\sqrt{2 x}$.

Watch Video Solution
26.
Solve
for
x ,
when
$\sqrt{2 x^{2}+9}+\sqrt{2 x^{2}-9}=9+3 \sqrt{7}$

D Watch Video Solution

27.

Solve:
$(a+x)^{2 / 3}+2(a-x)^{2 / 3}=3\left(a^{2}-x^{2}\right)^{1 / 3}$
28. Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60°.

- Watch Video Solution

29. If $x \propto y+z, y \propto z+x$ and $z \propto x+y$, and the
constant of variation are $1, \mathrm{~m}, \mathrm{n}$ respectively, then
prove that, $\frac{l}{l+1}+\frac{m}{m+1}+\frac{n}{n+1}=1$

- Watch Video Solution

30. If x, y, z be variable quantities such that $(x+y+z)$ is constant and $(z+x-2 y)(x+y-2 z) \propto y z$ then show that $[2(y+z)-x] \propto y z$.

- Watch Video Solution

31. If $\frac{x}{y} \alpha x+y$ and $\frac{y}{x} \alpha x-y$, then show that $x^{2}-y^{2}=$ constant.

- Watch Video Solution

32. The radii of two circles are 8 cm and 6 cm respectively. Find the diameter of the circle having
area equal to the sum of the areas of the two circles.

- Watch Video Solution

33. If $a x+b y \propto \sqrt{x y}$, then show that $(a x)^{2}+(b y)^{2} \propto x y$,

- Watch Video Solution

34. If $y \propto \frac{1}{x}$ then show that $\mathrm{x}+\mathrm{y}$ will be minimum when $\mathrm{x}=\mathrm{y}$.
35. If $a^{2}+b^{2}+c^{2}=16, x^{2}+y^{2}+z^{2}=25$ and $a x+b y+c z=20, \quad$ then show that $(a+b+c) \propto(x+y+z)$

- Watch Video Solution

36. At the starting of the year two friends Bhaskar and Indrajit starts a joint business with capital Rs.

20,000 and Rs, 25,000. After some months Bhaskar invests Rs. 10,000 more in the business. At the end of
the year they make a profit of Rs. 3100 and Bhaskar gets Rs. 1600 as profit. After how many months of startind the business Bhasker invests the capital of Rs. 10,000?

- Watch Video Solution

37. Samiran and Monojit start a business with a capital of Rs. 60,000 and Rs 75,000. After 4 months when kumarjit invests Rs. 40,500 in he business samiran and Monojit withdraws that money in the ratio of their capitals. If the total profit at the end of the year be 19,575 , how much they will get?

- Watch Video Solution

38. At the starting of the year two friends Bhaskar and Indrajit starts a joint business with capital Rs.

20,000 and Rs, 25,000. After some months Bhaskar invests Rs. 10,000 more in the business. At the end of the year they make a profit of Rs. 3100 and Bhaskar gets Rs. 1600 as profit. After how many months of startind the business Bhasker invests the capital of Rs. 10,000?

- Watch Video Solution

39. The value of a machine depreciates at the rate of 10% every year.It was purchased 3 years ago. If its present value is Rs. 8748 , then its purchase price was?
40. The value of a plot of land increase by 3% every year. If the value of the plot is $45,00,000$. Now, find the price after 2 years.

- Watch Video Solution

41. By compound interest, the interest of a sum in the 2nd year is Rs. 880 and the interest in the 3rd year is Rs. 968 . Find the rate of interest and the sum.

Watch Video Solution

42. If the compound interest of Rs. 6400 in 18 months
be Rs. 1008.80. Find the rate of interest, interest is added to the principal at the end of every six months.

- Watch Video Solution

43. Rs, 16820 is divided among two brothers aged 27
years and 25 years. They invest their money at 5\%
compound interest in such a way that each of them
will get equal amount of money at the age of 40
years. What are the share of each of them out of Rs.
16,820 ?
44. The simple interest in 3 years and compound interest in 2 years on a certain sum of money at the same rate are Rs. 1200 and Rs. 832 respectively. The principal is

- Watch Video Solution

45. In $\triangle A B C$, angla $B A C=90^{\circ}$, if $C D$ is a median of $\triangle A B C$, then prove that $B C^{2}=C D^{2}+3 A D^{2}$.
46. The side $B C$ of a triangle $A B C$ is bisected at $D ; O$ is any point in $A D . B O$ and $C O$ produced meet $A C$ and $A B$ in E and F respectively and $A D$ is produced to X so that D is the mid-point of $O X$. Prove that $A O: A X=A F: A B$ and show that $\mathrm{FE}|\mid \mathrm{BC}$.

- Watch Video Solution

47. Two tangents $A B$ and $A C$ drawn from an external
point A of a circle touch the circle at the point B and
C. A tangent drawn to a point X lies on minor arc BC
intersects $A B$ and $A C$ at the points D and E

$\triangle A D E=2 A B$.

- Watch Video Solution

48. Does the point ($-2.5,3.5$) lie inside, outside or on the circle $x^{2}+y^{2}=25$?

- Watch Video Solution

49. O is a point inside the $\triangle P Q R$ and frm $\mathrm{O}, \mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ are perpendicular one QR, RP and PQ .

Prove

 that$P C^{2}+Q A^{2}+R B^{2}=P B^{2}+R A^{2}+Q C^{2}$.
50. $A B C D$ is a cyclic quadrilaterla. Extended $A B$ and $D C$ intersect at P. Prove that PA.PB = PC.PD.

D Watch Video Solution

51. A straight line L interesect the sides $B C, C A$ and $B A$ of $\triangle A B C$ at P, Q and R resp. Prove that $\frac{P R}{P Q} \cdot \frac{C Q}{A C} \cdot \frac{A B}{R B}=1$.
(D) Watch Video Solution
52. In a right angled traingle $\mathrm{PQR}, \angle P$ is right angle and PS is perpendicular to the hypetnuse QR. Prove that $\frac{1}{P S^{2}}-\frac{1}{P Q^{2}}=\frac{1}{P R^{2}}$

D Watch Video Solution

53. The radii of the two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has a circumference equal to the sum of the circumferences of the two circles.
54. Two parallel planes which are parallel to the base of a right circular, cone cut the height of the cone are equally. Show that the ratio of the volume of three parts of the cone is $1: 17: 19$.

- Watch Video Solution

55. Two make a right circular conical tent 22 metre broad canvas is required. It is height of the tent is 28 metre and the area of the base is 1386 sq. metre then how long convas is required to make the tant?
56. In a right angled triangle the length of the sides
containing the righ angle are 3 cm and 4 cm . If the triangle is rotated about its hypotenuse, then two cones will be formed on the opposite side of the same base. Find their total volume.

- Watch Video Solution

57. The lower part of a tent is in the form of a right circular cylinder whose height is 3.25 metre. The upper part of the tent is in the form of a right circular cone. The total height of the tent is 9.25
metre and diameter of the base is 5 metre. How much tripol is required to make the tent?

- Watch Video Solution

58. In a cuboid, the volume, total surface area and the length of one of its diagonal are $144 \mathrm{~cm}, 192 \mathrm{sq} . \mathrm{cm}$ and $13 \mathrm{cu} . \mathrm{cm}$ resp. Find the length of its edges.

- Watch Video Solution

59. In a Cuboid, the volume, length and the length of its one diagonal are 2160 c.c., 20 cm and 25 cm resp.

Find its breadth and height.
60. A cylindrical vessel of radius 4 cm contains water.

A solid sphere of radius 3 cm is lowered into the water, until it is completely immersed. Find the rise in the water level (in cm) in the vessel.

D Watch Video Solution

61. By melting a solid iron sphere, 32 conical paper weights of equal volume is formed. If the height of

Each paper weight is 4 cm and the diameter of base is
1 cm , find the diameter of the sphere.

- Watch Video Solution

62. The ratio of the volumes of a right circular cylinder and a sphere is $3: 2$. If the radius of the sphere is double the radius of the cylinder, then find the ratio of area of whole surface of the sphere and the cylinder

- Watch Video Solution

63. If the half total surface area of the cuboid is equal to the square of the length of its diagonal, then prove that the cuboid is cube.

- Watch Video Solution

64. If $5 \cos \theta+12 \sin \theta=13$ show that $\tan \theta=\frac{12}{5}$.

- Watch Video Solution

65. Solve:

$$
4 \sqrt{3} \cos ^{2} \theta-4 \sin \theta+\sqrt{3}=0\left[0^{\circ} \leq \theta \leq 90^{\circ}\right]
$$

- Watch Video Solution

66. Solve:
$2 \cos \theta+2 \sqrt{2}=3 \sec \theta$
67. Solve:
$4 \cos \theta+3 \sec \theta=4 \sqrt{3}$

- Watch Video Solution

68. Show that $-1 \leq \cos \theta \leq 1$.

Watch Video Solution

69. If $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, then show
$\cos \theta-\sin \theta=\sqrt{2} \sin \theta$.
70. If a $\sin x=b \cos x=\frac{2 c \tan x}{1-\tan ^{2} x}$ then show that $\left(a^{2}-b^{2}\right)=4 c^{2}\left(a^{2}+b^{2}\right)$.

- Watch Video Solution

71. If $\cos ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \alpha$, then show that $\cos ^{2} \alpha-\sin ^{2} \alpha=\tan ^{2} \theta$.
72. If $a \cos \theta+b \sin \theta=c$ then show that $a \sin \theta-b \cos \theta= \pm \sqrt{a^{2}+b^{2}-c^{2}}$

Watch Video Solution

73. If $\tan P \theta=P \tan \theta$, then show that $\frac{\sin ^{2} P \theta}{\sin ^{2} \theta}=\frac{P^{2}}{1+\left(P^{2}-1\right) \sin ^{2} \theta}$.

- Watch Video Solution

74. If $\left(a^{2}-b^{2}\right) \sin \theta+2 a b \cos \theta=a^{2}+b^{2}$ then find the value of $\tan \theta$.
75. If $\sec \alpha=\sec \beta \sec \gamma+\tan \beta \tan \gamma$, then show that $\sec \beta=\sec \gamma \sec \alpha \pm \tan \gamma \tan \alpha$.

- Watch Video Solution

76. if $\quad x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta \quad$ and
$x \sin \theta-y \cos \theta=0$ prove that $x^{2}+y^{2}=1$

- Watch Video Solution

77.

$\left(1+\sec 20^{2}+\cot 70^{\circ}\right)\left(1-\operatorname{cosec} 20^{\circ}+\tan 70^{\circ}\right)$
equals

- Watch Video Solution

78. If $(\sec \alpha-\tan \alpha)(\sec \beta-\tan \beta)(\sec \gamma-\tan \gamma)=$ $(\sec \alpha+\tan \alpha)(\sec \beta+\tan \beta)(\sec \gamma+\tan \gamma)$ then show that each side is equal to 1 or -1 .

- Watch Video Solution

79.

Find
the value
$\sin ^{2}\left(\frac{\pi}{16}\right)+\sin ^{2}\left(\frac{3 \pi}{16}\right)+\sin ^{2}\left(\frac{5 \pi}{16}\right)+\sin ^{2}\left(\frac{7 \pi}{16}\right)$

- Watch Video Solution

80. It $\frac{\cos ^{4} A}{\cos ^{2} B}+\frac{\sin ^{4} A}{\sin ^{2} B}=1$ then show that $\frac{\cos ^{4} B}{\cos ^{2} A}+\frac{\sin ^{4} B}{\sin ^{2} A}=1$
81. Show that the relation $\sec ^{2} \theta=\frac{4 x y}{(x+y)^{2}}$ is possible, only when $\mathrm{x}=\mathrm{y}$.

- Watch Video Solution

82. Find the value and
$\tan \left(\frac{\pi}{16}\right) \tan \left(\frac{3 \pi}{16}\right) \tan \left(\frac{5 \pi}{16}\right) \tan \left(\frac{7 \pi}{16}\right)$.

D Watch Video Solution

83. A spherical ballon of radius r while floating in the
sky, makes an angle α in the eye of viewer. If the
angle of elevation of the centre of the ballon in the eye of the viewer be β, show that the altitude of the centre of the ballon from the ground is $r \operatorname{cosec} \frac{\alpha}{2} \sin \beta$.

- Watch Video Solution

84. If $7 \cos \theta+5 \sin \theta=5$, then find the value of $5 \cos \theta-7 \sin \theta$.

- Watch Video Solution

85. From the bottom of a 'tila' the angle of elevation of its unreachable top is 45°. After moving 100 metre
along the 'tila' the angle of elevation becomes 60°.
Find the height of the tila? $[\sqrt{3}=1.732]$

D Watch Video Solution

86. An incomplete frequency distribution table is
given below:

No. of accidents	0	1	2	3	4	5	total frequency
Frequency no. of days	45	f_{1}	f_{2}	25	10	5	200

If the mean of the frequency distribution is 1.46 find the value of $f_{1} \& f_{2}$.
87. The step frequency distribution table of the marks
obtained by female students is given below. Calculate
the mean marks.

Class limit (Marks)	Less than 10	Less than 20	Less than 30	Less than 40	Less than 50
No. of female Students	5	9	17	29.	45

D Watch Video Solution

88. Find the mean of the marks from the frequency table.

Class interval	$1-4$	$4-9$	$9-16$	$16-27$
Frequency .	6	12	${ }^{2}$	26

89. An incomplete frequency distribution table is given below:

Height (cm)	51-61	61-71	71	8	91-10	101-11		1-12
Frequeicy	3	8	27	f	17	1.		9

If the mean of the frequency distribution is 85 cm find the missing frequency ' f '.

D Watch Video Solution

90. From the data given below, if the meadian is 32
find the value of f_{1} and f_{2} when total frequency is

100

Flass boundary	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	10	f_{1}	25	30	f_{2}	10

D Watch Video Solution

91. Find the median of the following data.

Mid yalue	15	25	35	44	55	65	75	85	95
Frequency	66	8	10	2	4	7	9	4	6

- Watch Video Solution

92. The frequency distribution of marks in

Mathematics obtained by 50 students in an
examination is given below. Find mode.

Marks	$46-50$	$41-45$	$36-40$	$31-35$	$26-30$	$21-25$
Frequency	5	10	15	10	8	2

- Watch Video Solution

93. From the following data given below, the mode is

24 , find the value of ' f '.

Score	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
frequency	3	5	9	f	2

D Watch Video Solution
94. From the data given below draw a more than ogive and find the median.

Measurement	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$.50-60$
Frequency	8	12	21	30	22	7

D Watch Video Solution

95. From the frequency distibution table given below

 draw a less than ogive.| Marks obtained | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 4 | 8 | 12 | 6^{2} | 10 |

