

MATHS

BOOKS - UNITED BOOK HOUSE

Pythagoras Theorem

Exercise

1. Multiple Choice Questions (MCQ) In

 \triangle $ABC, \angle BAC = 90^{\circ}.$ If AD is per

pendicular to BC, then

A.
$$AD^2 = BD$$
. DC

$$B. AD^2 = AB. AC$$

$$\mathsf{C.}\,AD^2=BD^2+DC$$

$$D. AD = BD . DC.$$

Watch Video Solution

2. If the diagonals of a rhombus are 64cm and

48cm, then the perimeter of the rhombus is

A. 120cm.

B. 160cm.

C. 40cm.

D. 102cm.

Answer:

Watch Video Solution

3. In \triangle XYZ, If $\angle XYZ = 90^{\circ}$, XZ = 100cm and XY = 80cm., then length of YZ is

A. 40cm.

B. 60cm.

C. 80cm.

D. none of these.

Answer:

Watch Video Solution

4. In $\triangle ABC$, the perpendicular from A upon

BC intersects BC at D. If BD = 16., DC = 4cm and

AD = 8cm., then $\angle BAC$ =

- A. 30°
- B. 60°
 - C. 45°
- D. 90°

Watch Video Solution

5. PQ is a diameter of a semicircle with radius 7.5 cm. and $\angle PQR$ is the angle on the semicircle. If PR = 9cm. Then the length of QR is

A. 6cm.
B. 12cm.
C. 8cm.
D. 8.5cm.
Answer:
Watch Video Solution
6. If the angles of a triangle are in ratio 1:1:2,
then the ratio of the sides of the triangle is

A.
$$2:2:\sqrt{3}$$

B. 1:1:
$$\sqrt{2}$$

C. 1:1:
$$\sqrt{2}$$

D. 1:1:
$$\sqrt{3}$$

Watch Video Solution

7. In \triangle ABC, if AD is the median and

$$\angle ABC=90^{\circ}$$
 , then AC^2 =

A.
$$AD^2$$
. BD^2

$$\mathsf{B.}\,AD^2+BD^2$$

$$\mathsf{C.}\,AD^2 + 2BD^2$$

$$\mathsf{D.}\,AD^2+3BD^2.$$

8. If the three sides of a triangle are $\left(a^2+b^2\right)$ cm., $\left(a^2-b^2\right)$ cm. and 2ab cm., then the greatest angle of the triangle is

- A. 100°
- B. 110°
- C. 90°
- D. 120°

Watch Video Solution

9. In a right angled triangle the ratio of the smaller sides is 3 : 4. If the length of greatest

side is 20cm., then the length of the smallest
side is
A. 8cm.
B. 9cm.
C. 10cm.
D. 12cm.
Answer:
Watch Video Solution

10. In $\ \ \triangle \ ABC, \angle A = 90^{\circ}$. The perpendicular

from A upon BC meets. BC at D. If BC = 9cm., BD

= 4cm., then the length of AB is

A. 6cm.

B. 8cm.

C. 10cm.

D. 12cm.

Answer:

Watch Video Solution

11. Two poles of the height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12, the distance between their tops is____

A. 11 m

B. 12 m

C. 13 m

D. 14 m

Answer:

Watch Video Solution

12. In a $riangle ABC, \; riangle A=90^{\circ}$, AB = 5 cm and

AC = 12 cm. If $AD \perp BC$, then AD is equal

to____

A. 13/2 cm

B. 60/13 cm

C. 13/60 cm

D. $\frac{2\sqrt{15}}{13}cm$

Answer:

13. In an equiliteral triangle ABC, if $AD \perp BC$,

then

A.
$$2AB^2=3AD^2$$

 $B.4AB^2 = 3AD^2$

 $\mathsf{C.}\,3AB^2=4AD^2$

D. $3AB^2 = 2AD^2$

Answer:

Watch Video Solution

14. If the measures of the sides of triangle are $\left(x^2-1\right), \left(x^2+1\right)$ and 2x cm, then the triangle would be___

- A. equilateral
- B. isosceles
- C. acute angled
- D. right angled

Answer:

Watch Video Solution

15. If the sides of a right angled triangle are three cosecutive integers, then the length of smallest side is

A. 3 units

B. 2 units

C. 4 units

D. 5 units

Answer:

16. ABC is a right angled triangle, right angled at B such that BC = 6 cm and AB = 8 cm. A circle with centre O is inscribed in \triangle ABC. The radius of the circle is___

A. 1 cm

B. 2 cm

C. 3 cm

D. 4 cm

Watch Video Solution

17. A point D is taken from the side BC of a right angled triangle ABC, where AB is hypotensuse. Then___

A.
$$AB^2 + CD^2 = BC^2 + AD^2$$

$$\mathsf{B.}\,CD^2+BD^2$$

$$\mathsf{C.}\,AB^2 + AC^2 = 2AD^2$$

$$\mathsf{D.}\,AB^2=AD^2+BD^2$$

Watch Video Solution

18. ABC is a right angled triangle, right angled at C and P is the length of perpendicular from C on AB. If a, b and C are the length of sidesBC, CA and AB respectively. Then___

A.
$$\frac{1}{p^2} = \frac{1}{b^2} - \frac{1}{a^2}$$

B.
$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$$

C.
$$\frac{1}{p^2} + \frac{1}{a^2} + \frac{1}{b^2}$$

D.
$$\frac{1}{p^2} = \frac{1}{a^2} - \frac{1}{b^2}$$

Watch Video Solution

19.
$$\triangle$$
 ABC is an isosceles triangle in which

$$\angle C = 90^{\circ}$$
 . If AC = 6 cm, then AB is equal___

A.
$$6\sqrt{2}$$
 cm

B. 6 cm

C.
$$2\sqrt{6}$$
 cm

D. $4\sqrt{2}$ cm

Answer:

Watch Video Solution

20. In an isosceles triangle ABC, if AB = AC = 25 cm and BC = 14 cm, then the measure of altitude from A on BC is____

A. 20 cm

B. 22 cm

C. 18 cm

D. 24 cm

Answer:

Watch Video Solution

21. If $\triangle ABC$ is an equilateral triangle such that $AD \perp BC$, then AD^2 =

A.
$$\frac{3}{2}DC^2$$

 $B.\,2DC^2$

 $\mathsf{C.}\,3CD^2$

D. $4DC^2$

Answer:

Watch Video Solution

22. In a \triangle ABC, perpendicular AD from A on

BC meets BC at D. If BD = 8 cm, DC = 2 cm and

AD = 4 cm, then___

A. \triangle ABC is isosceles

B. \triangle ABC is equilaterial

C.AC = 2AB

D. \triangle ABC is right-angled at A

Answer:

Watch Video Solution

23. If ABC is an isosceles triangle and D is a point on BC such that $AD \perp BC$, then

A.
$$AB^2-AD^2=BD.\ DC$$

$$\mathsf{B.}\,AB^2-AD^2=BD^2-DC^2$$

$$\mathsf{C.}\,AB^2 + AD^2 = BD.\,DC$$

$$\mathsf{D.}\,AB^2+AD^2=BD^2-DC^2$$

Watch Video Solution

24. If ABC is a right triangle right-angled at B and M, N are the midpoints of AB and BC respectively. Then 4 $\left(AN^2+CM^2\right)$ =

A.
$$4AC^2$$

 $\mathsf{B.}\,5AC^2$

$$\operatorname{C.}\frac{5}{4}AC^2$$

D. $6AC^2$

Answer:

Watch Video Solution

triangle ABC such that $BE \perp CA$, then

25. If E is a point on side CA of an equilateral

 $AB^2+BC^2+CA^2$ is equal to

A. $2BE^2$

 $B.3BE^2$

 $\mathsf{C.}\,4BE^2$

D. $6BE^2$

Answer:

Watch Video Solution

26. In a right triangle ABC right-angled at B, if P and Q are points on the side AB and AC respectively, then

A.
$$AQ^2+CP^2=2ig(AC^2+PQ^2ig)$$

$$\mathsf{B.}\,2\big(AQ^2+CP^2\big)=AC^2+PQ^2$$

$$\mathsf{C.}\,AQ^2+CP^2=AC^2+PQ^2$$

D.
$$AQ + CP = 1/2 (AC + PQ)$$

Watch Video Solution

27. \triangle ABC is a right triangle right angled at

A and $AD \perp BC$. Then BD/DC is equal___

A.
$$\left(\frac{AB}{AC}\right)^2$$
B. AB/AC
C. $\left(\frac{AB}{AD}\right)^2$

D. AB/AD

Answer:

Watch Video Solution

28. A man goes 24 m due west and then 7 m due north. How far is he from the starting point?

- A. 31m
- B. 17 m
- C. 25 m
- D. 26 m.

Watch Video Solution