©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - UNITED BOOK HOUSE

Pythagoras Theorem

Exercise

1. Multiple Choice Questions (MCQ) In
$\triangle A B C, \angle B A C=90^{\circ}$. If AD is per
pendicular to $B C$, then
A. $A D^{2}=B D \cdot D C$
B. $A D^{2}=A B . A C$
C. $A D^{2}=B D^{2}+D C$
$D . A D=B D . D C$.

Answer:

D Watch Video Solution
2. If the diagonals of a rhombus are 64 cm and 48 cm , then the perimeter of the rhombus is
A. 120 cm .
B. 160 cm .
C. 40 cm .
D. 102 cm .

Answer:

D Watch Video Solution

3. In $\triangle X Y Z$, If $\angle X Y Z=90^{\circ}$, $\mathrm{XZ}=100 \mathrm{~cm}$
and $X Y=80 \mathrm{~cm}$., then length of $Y Z$ is
A. 40 cm .
B. 60 cm .
C. 80 cm .
D. none of these.

Answer:

D Watch Video Solution
4. In $\triangle A B C$, the perpendicular from A upon $B C$ intersects $B C$ at D. If $B D=16$., $D C=4 \mathrm{~cm}$ and
$\mathrm{AD}=8 \mathrm{~cm}$. , then $\angle B A C=$
A. 30°
B. 60°
C. 45°
D. 90°

Answer:

D Watch Video Solution

5. PQ is a diameter of a semicircle with radius
7.5 cm . and $\angle P Q R$ is the angle on the semicircle. If $P R=9 \mathrm{~cm}$. Then the length of $Q R$ is
A. 6 cm .
B. 12 cm .
C. 8 cm .
D. 8.5 cm .

Answer:

D Watch Video Solution

6. If the angles of a triangle are in ratio $1: 1: 2$,
then the ratio of the sides of the triangle is
A. $2: 2: \sqrt{3}$
B. $1: 1: \sqrt{2}$
C. $1: 1: \sqrt{2}$
D. $1: 1: \sqrt{3}$

Answer:

D Watch Video Solution
7. In $\triangle A B C$, if AD is the median and
$\angle A B C=90^{\circ}$, then $A C^{2}=$
A. $A D^{2} \cdot B D^{2}$
B. $A D^{2}+B D^{2}$
C. $A D^{2}+2 B D^{2}$
D. $A D^{2}+3 B D^{2}$.

Answer:

D Watch Video Solution

8. If the three sides of a triangle are $\left(a^{2}+b^{2}\right)$
cm., $\left(a^{2}-b^{2}\right) \mathrm{cm}$. and 2 ab cm ., then the greatest angle of the triangle is
A. 100°
B. 110°
C. 90°
D. 120°

Answer:

D Watch Video Solution
9. In a right angled triangle the ratio of the smaller sides is $3: 4$. If the length of greatest
side is 20 cm ., then the length of the smallest side is
A. 8 cm .
B. 9 cm .
C. 10 cm .
D. 12 cm .

Answer:
(Watch Video Solution
10. In $\triangle A B C, \angle A=90^{\circ}$. The perpendicular
from A upon $B C$ meets. $B C$ at D. If $B C=9 \mathrm{~cm}$., $B D$
$=4 \mathrm{~cm}$., then the length of $A B$ is
A. 6 cm .
B. 8 cm .
C. 10 cm .
D. 12 cm .

Answer:

- Watch Video Solution

11. Two poles of the height 6 m and 11 m stand
vertically upright on a plane ground. If the distance between their foot is 12 , the distance between their tops is
A. 11 m
B. 12 m
C. 13 m
D. 14 m

Answer:

12. In a $\triangle A B C, \triangle A=90^{\circ}, \mathrm{AB}=5 \mathrm{~cm}$ and
$\mathrm{AC}=12 \mathrm{~cm}$. If $A D \perp B C$, then AD is equal to
A. $13 / 2 \mathrm{~cm}$
B. $60 / 13 \mathrm{~cm}$
C. $13 / 60 \mathrm{~cm}$
D. $\frac{2 \sqrt{15}}{13} \mathrm{~cm}$

Answer:
13. In an equiliteral triangle ABC , if $A D \perp B C$, then
A. $2 A B^{2}=3 A D^{2}$
B. $4 A B^{2}=3 A D^{2}$
C. $3 A B^{2}=4 A D^{2}$
D. $3 A B^{2}=2 A D^{2}$

Answer:

14. If the measures of the sides of triangle are
$\left(x^{2}-1\right),\left(x^{2}+1\right)$ and $2 x \mathrm{~cm}$, then the triangle would be
A. equilateral
B. isosceles
C. acute angled
D. right angled

Answer:
15. If the sides of a right angled triangle are three cosecutive integers, then the length of smallest side is \qquad
A. 3 units
B. 2 units
C. 4 units
D. 5 units

Answer:
16. $A B C$ is a right angled triangle, right angled at B such that $B C=6 \mathrm{~cm}$ and $A B=8 \mathrm{~cm}$. A circle with centre O is inscribed in $\triangle A B C$. The radius of the circle is
A. 1 cm
B. 2 cm
C. 3 cm
D. 4 cm

Answer:

- Watch Video Solution

17. A point D is taken from the side $B C$ of a right angled triangle $A B C$, where $A B$ is hypotensuse. Then
A. $A B^{2}+C D^{2}=B C^{2}+A D^{2}$
B. $C D^{2}+B D^{2}$
C. $A B^{2}+A C^{2}=2 A D^{2}$
D. $A B^{2}=A D^{2}+B D^{2}$

Answer:

D Watch Video Solution

18. $A B C$ is a right angled triangle, right angled
at C and P is the length of perpendicular from
C on $A B$. If a, b and C are the length of sides $B C, C A$ and $A B$ respectively. Then

$$
\begin{aligned}
& \text { A. } \frac{1}{p^{2}}=\frac{1}{b^{2}}-\frac{1}{a^{2}} \\
& \text { B. } \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}} \\
& \text { C. } \frac{1}{p^{2}}+\frac{1}{a^{2}}+\frac{1}{b^{2}}
\end{aligned}
$$

$$
\text { D. } \frac{1}{p^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}}
$$

Answer:

D Watch Video Solution

19. $\triangle A B C$ is an isosceles triangle in which
$\angle C=90^{\circ}$. If $\mathrm{AC}=6 \mathrm{~cm}$, then AB is equal
A. $6 \sqrt{2} \mathrm{~cm}$
B. 6 cm
C. $2 \sqrt{6} \mathrm{~cm}$
D. $4 \sqrt{2} \mathrm{~cm}$

Answer:

D Watch Video Solution

20. In an isosceles triangle $A B C$, if $A B=A C=25$
cm and $\mathrm{BC}=14 \mathrm{~cm}$, then the measure of altitude from A on $B C$ is
A. 20 cm
B. 22 cm

C. 18 cm

D. 24 cm

Answer:

D Watch Video Solution

21. If $\triangle A B C$ is an equilateral triangle such
that $A D \perp B C$, then $A D^{2}=$
A. $\frac{3}{2} D C^{2}$
B. $2 D C^{2}$
C. $3 C D^{2}$
D. $4 D C^{2}$

Answer:

D Watch Video Solution

22. In a $\triangle A B C$, perpendicular AD from A on
$B C$ meets $B C$ at D. If $B D=8 \mathrm{~cm}, D C=2 \mathrm{~cm}$ and
$A D=4 \mathrm{~cm}$, then
A. $\triangle A B C$ is isosceles
B. $\triangle A B C$ is equilaterial
C. $A C=2 A B$
D. $\triangle A B C$ is right-angled at A

Answer:

D Watch Video Solution

23. If $A B C$ is an isosceles triangle and D is a point on BC such that $A D \perp B C$, then

$$
\text { A. } A B^{2}-A D^{2}=B D . D C
$$

$$
\begin{aligned}
& \text { B. } A B^{2}-A D^{2}=B D^{2}-D C^{2} \\
& \text { C. } A B^{2}+A D^{2}=B D . D C \\
& \text { D. } A B^{2}+A D^{2}=B D^{2}-D C^{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

24. If $A B C$ is a right triangle right-angled at B and M, N are the midpoints of $A B$ and $B C$ respectively. Then $4\left(A N^{2}+C M^{2}\right)=$
A. $4 A C^{2}$
B. $5 A C^{2}$
C. $\frac{5}{4} A C^{2}$
D. $6 A C^{2}$

Answer:

D Watch Video Solution

25. If E is a point on side CA of an equilateral triangle ABC such that $B E \perp C A$, then $A B^{2}+B C^{2}+C A^{2}$ is equal to
A. $2 B E^{2}$
B. $3 B E^{2}$
C. $4 B E^{2}$
D. $6 B E^{2}$

Answer:

D Watch Video Solution

26. In a right triangle $A B C$ right-angled at B, if
P and Q are points on the side $A B$ and $A C$ respectively, then
A. $A Q^{2}+C P^{2}=2\left(A C^{2}+P Q^{2}\right)$
B. $2\left(A Q^{2}+C P^{2}\right)=A C^{2}+P Q^{2}$
C. $A Q^{2}+C P^{2}=A C^{2}+P Q^{2}$
D. $A Q+C P=1 / 2(A C+P Q)$

Answer:

D Watch Video Solution

27. $\triangle A B C$ is a right triangle right angled at

A and $A D \perp B C$. Then $\mathrm{BD} / \mathrm{DC}$ is equal
A. $\left(\frac{A B}{A C}\right)^{2}$
B. $A B / A C$
C. $\left(\frac{A B}{A D}\right)^{2}$
D. $A B / A D$

Answer:

D Watch Video Solution

28. A man goes 24 m due west and then 7 m
due north. How far is he from the starting point?
A. 31 m
B. 17 m
C. 25 m
D. 26 m .

Answer:

- Watch Video Solution

