MATHS ## **BOOKS - UNITED BOOK HOUSE** # Theorem related to Angle in a Circle Exercise **1.** If O is the circumcentre of $\triangle ABC$, then the value of $(\angle OBC + \angle BAC)$ is A. 60° B. 75° C. 90° D. 100° ## **Answer:** Watch Video Solution O intersect each other at the point P. If ∠AOD 2. Two chords AB and CD of a circle with centre =20° and \angle BOC = 30°, then \angle BPC is equal to? A. 25° B. 40° $\mathsf{C}.\,90^\circ$ D. 105° ## **Answer:** **Watch Video Solution** **3.** O is the circumcentre of $\triangle ABC$. If $\angle BAC = 85^{\circ}$, $\angle BCA = 55^{\circ}$, then the value of $\angle OAC$ is A. 45° B. 60° C. 50° D. 55° ## **Answer:** Watch Video Solution **4.** AB is a diameter of a circle with centre at O. C is any point on the circle. If $\angle BOC = 110^{\circ}$, then $\angle BAC$ = - A. 55° - B. 65° - C. 60° - D. 45° **Watch Video Solution** **5.** O is the incentre of $\triangle ABC^{\sim}$ and if angleBOC = 140thenangleBAC $\stackrel{\sim}{=}$? - A. 30° - B. 40° - C. 50° - D. 60° **Watch Video Solution** **6.** Two chords AB and CD of a circle intersect at the point P, which is inside the circle and O is the centre of the circle. If $\angle AOC = 55^{\circ}$, and $$\angle BOD = 45^{\circ}$$, then $\angle APC$ = - A. 40° - B. 50° - C. 60° - D. 80° ### **Answer:** **7.** AB and AC are two chords perpendicular to each other. If the radius of the circle = 2r unit, then the length of chord BC is - A. 2r unit - B. 3r unit - C. $3\sqrt{3}runit$ - D. 4r unit. #### **Answer:** 8. AB is a diameter of a circle with centre at O. Chord PQ intersects AB in such a way that $$\angle AOP = 130^{\circ}$$. The value of $\angle PQB$ is - A. 75° - B. 65° - C. 25° - D. 15° #### **Answer:** **9.** AD and AC are two equal chords of a circle with centre O. AB is the diameter of the circle. If $$\angle COD = 140^{\circ}$$, then $\angle OBC$ = - A. 55° - B. 60° - C. 65° - D. 70° #### **Answer:** 10. AB is a diameter of a circle with centre at O. If chord $CD \perp AB$ and $\angle CAD = 80^{\circ}$, then $$\angle ADC$$ = - A. 45° - B. 50° - C. 55° - D. 80° #### **Answer:** **11.** If O be the circumcentre of a triangle PQR and $\angle QOR=110^\circ$, $\angle OPR=25^\circ$, then the measure of $\angle PRQ$ is - A. 65° - B. 50° - C. 55° - D. 60° #### **Answer:** 12. In the adjacent figure, AB be diameter of a circle whose centre is O. If $\angle AOE = 150^{\circ}$, $\angle DAO = 51^{\circ}$ then the measure of $\angle CBE$ is___ $A.115^{\circ}$ B. 110° C. 105° D. 120° ### **Answer:** **13.** Two chords AB and CD of cicle whose centre is O, meet at the point P and $\angle AOC=50^\circ$, $\angle BOD=40^\circ$. Then the measure of $\angle BPD$ is A. 40° B. $45^{\,\circ}$ C. 60° D. 75° ## **Watch Video Solution** **14.** O is the centre and ABC subtends an angle of 130° at O. AB is extended to P. Then $\angle PBC$ is A. 75° B. 70° C. 65° D. 80° **Watch Video Solution** **15.** Two chords AB, CD of a circle with centre O intersect each other at P. $\angle ADP=23^\circ$ and $\angle APC = 70^{\circ}$, then the $\angle BCD$ is A. 45° B. 47° C. 57° D. 67° Watch Video Solution **16.** ABCD is a quadrilateral inscribed in a circle with centre O. If $\angle COD=120^\circ$ and $\angle BAC=30^\circ$, then BCD is A. 90° B. 120° C. 75° D. 60° ## **Watch Video Solution** 17. ABCD is cyclic trapezium such that AD||BC, If $$\angle ABC = 70^{\circ}$$ then the value of $\angle BCD$ is ___ A. 60° B. 70° $\mathsf{C.}\,40^\circ$ D. 80° ## **Watch Video Solution** **18.** If an exterior angle of a cyclic quadrilateral be 50° , then the interior opposite angle is___ A. 40° B. 50° C. 90° D. 130° **Watch Video Solution** **19.** ABCD is a cyclic trapezium with AD \parallel BC. If \angle B=70 then determine other three angles of the trapezium. **Watch Video Solution** 20. A cyclic quadrilateral ABCD is such that AB = BC, AD = DC, $AC \perp BD$, $\angle CAD = heta$, then the angle $\angle ABC$ equals___ A. $$\frac{\theta}{2}$$ B. θ $$\mathsf{C.}\,\frac{3\theta}{2}$$ D. 2θ ## **Answer:** 21. If ABCD be a cyclic quadrilateral in which $$\angle A = 4x^{\circ}$$, $$\angle B=7x^{\,\circ}$$, $$\angle C = 5y^{\circ}\&\angle D = y^{\circ}$$, then x, y is___ - A. 3:4 - B.4:3 - C.5:4 - D. 4:5 #### **Answer:** **22.** ABCD is a cyclic quadrilateral and AD is a diameter. If $\angle DAC = 55^{\circ}$ then value of $\angle ABC$ is - A. 35° - B. 55° - C. 125° - D. 145° #### **Answer:** 23. ABCD is a cyclic quadrilateral. AB and DC are produced to meet at P. If $\angle ADC = 70^{\circ}$ and $\angle DAB = 60^{\circ}$, then $\angle PBC + \angle PCB$ is equals___ $A.130^{\circ}$ B. 150° $C.155^{\circ}$ D. 180° ### **Answer:** **24.** O and C are respectively the orthocentre and circumcentre of an acute angle triangle PQR. The points P and Q are joined and produced to meet the side QR ats. If $\angle PQS = 60^{\circ}$ and $\angle QCR = 130^{\circ}$ then $\angle RPS =$ A. 30° B. 35° C. 100° D. 60° #### **Answer:**