

MATHS

BOOKS - UNITED BOOK HOUSE

Theorem related to Angle in a Circle

Exercise

1. If O is the circumcentre of $\triangle ABC$, then the value of $(\angle OBC + \angle BAC)$ is

A. 60°

B. 75°

C. 90°

D. 100°

Answer:

Watch Video Solution

O intersect each other at the point P. If ∠AOD

2. Two chords AB and CD of a circle with centre

=20° and \angle BOC = 30°, then \angle BPC is equal to?

A. 25°

B. 40°

 $\mathsf{C}.\,90^\circ$

D. 105°

Answer:

Watch Video Solution

3. O is the circumcentre of $\triangle ABC$. If $\angle BAC = 85^{\circ}$, $\angle BCA = 55^{\circ}$, then the value of $\angle OAC$ is

A. 45°

B. 60°

C. 50°

D. 55°

Answer:

Watch Video Solution

4. AB is a diameter of a circle with centre at O.

C is any point on the circle. If $\angle BOC = 110^{\circ}$, then $\angle BAC$ =

- A. 55°
- B. 65°
- C. 60°
- D. 45°

Watch Video Solution

5. O is the incentre of $\triangle ABC^{\sim}$ and if angleBOC = 140thenangleBAC $\stackrel{\sim}{=}$?

- A. 30°
- B. 40°
- C. 50°
- D. 60°

Watch Video Solution

6. Two chords AB and CD of a circle intersect at the point P, which is inside the circle and O is

the centre of the circle. If $\angle AOC = 55^{\circ}$, and

$$\angle BOD = 45^{\circ}$$
 , then $\angle APC$ =

- A. 40°
- B. 50°
- C. 60°
- D. 80°

Answer:

7. AB and AC are two chords perpendicular to each other. If the radius of the circle = 2r unit, then the length of chord BC is

- A. 2r unit
- B. 3r unit
- C. $3\sqrt{3}runit$
- D. 4r unit.

Answer:

8. AB is a diameter of a circle with centre at O.

Chord PQ intersects AB in such a way that

$$\angle AOP = 130^{\circ}$$
 . The value of $\angle PQB$ is

- A. 75°
- B. 65°
- C. 25°
- D. 15°

Answer:

9. AD and AC are two equal chords of a circle with centre O. AB is the diameter of the circle.

If
$$\angle COD = 140^{\circ}$$
 , then $\angle OBC$ =

- A. 55°
- B. 60°
- C. 65°
- D. 70°

Answer:

10. AB is a diameter of a circle with centre at O.

If chord $CD \perp AB$ and $\angle CAD = 80^{\circ}$, then

$$\angle ADC$$
 =

- A. 45°
- B. 50°
- C. 55°
- D. 80°

Answer:

11. If O be the circumcentre of a triangle PQR and $\angle QOR=110^\circ$, $\angle OPR=25^\circ$, then the measure of $\angle PRQ$ is

- A. 65°
- B. 50°
- C. 55°
- D. 60°

Answer:

12. In the adjacent figure, AB be diameter of a circle whose centre is O. If $\angle AOE = 150^{\circ}$, $\angle DAO = 51^{\circ}$ then the measure of $\angle CBE$ is___

 $A.115^{\circ}$

B. 110°

C. 105°

D. 120°

Answer:

13. Two chords AB and CD of cicle whose centre is O, meet at the point P and $\angle AOC=50^\circ$, $\angle BOD=40^\circ$. Then the measure of $\angle BPD$ is

A. 40°

B. $45^{\,\circ}$

C. 60°

D. 75°

Watch Video Solution

14. O is the centre and ABC subtends an angle of 130° at O. AB is extended to P. Then $\angle PBC$ is

A. 75°

B. 70°

C. 65°

D. 80°

Watch Video Solution

15. Two chords AB, CD of a circle with centre O intersect each other at P. $\angle ADP=23^\circ$ and

 $\angle APC = 70^{\circ}$, then the $\angle BCD$ is

A. 45°

B. 47°

C. 57°

D. 67°

Watch Video Solution

16. ABCD is a quadrilateral inscribed in a circle with centre O. If $\angle COD=120^\circ$ and $\angle BAC=30^\circ$, then BCD is

A. 90°

B. 120°

C. 75°

D. 60°

Watch Video Solution

17. ABCD is cyclic trapezium such that AD||BC, If

$$\angle ABC = 70^{\circ}$$
 then the value of $\angle BCD$ is ___

A. 60°

B. 70°

 $\mathsf{C.}\,40^\circ$

D. 80°

Watch Video Solution

18. If an exterior angle of a cyclic quadrilateral be 50° , then the interior opposite angle is___

A. 40°

B. 50°

C. 90°

D. 130°

Watch Video Solution

19. ABCD is a cyclic trapezium with AD \parallel BC. If \angle B=70 then determine other three angles of the trapezium.

Watch Video Solution

20. A cyclic quadrilateral ABCD is such that AB

= BC, AD = DC, $AC \perp BD$, $\angle CAD = heta$, then

the angle $\angle ABC$ equals___

A.
$$\frac{\theta}{2}$$

B. θ

$$\mathsf{C.}\,\frac{3\theta}{2}$$

D. 2θ

Answer:

21. If ABCD be a cyclic quadrilateral in which

$$\angle A = 4x^{\circ}$$
,

$$\angle B=7x^{\,\circ}$$
 ,

$$\angle C = 5y^{\circ}\&\angle D = y^{\circ}$$
 , then x, y is___

- A. 3:4
- B.4:3
- C.5:4
- D. 4:5

Answer:

22. ABCD is a cyclic quadrilateral and AD is a diameter. If $\angle DAC = 55^{\circ}$ then value of $\angle ABC$ is

- A. 35°
- B. 55°
- C. 125°
- D. 145°

Answer:

23. ABCD is a cyclic quadrilateral. AB and DC are produced to meet at P. If $\angle ADC = 70^{\circ}$ and $\angle DAB = 60^{\circ}$, then $\angle PBC + \angle PCB$ is equals___

 $A.130^{\circ}$

B. 150°

 $C.155^{\circ}$

D. 180°

Answer:

24. O and C are respectively the orthocentre and circumcentre of an acute angle triangle PQR. The points P and Q are joined and produced to meet the side QR ats. If $\angle PQS = 60^{\circ}$ and $\angle QCR = 130^{\circ}$ then $\angle RPS =$

A. 30°

B. 35°

C. 100°

D. 60°

Answer:

