©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - R G PUBLICATION

LAW OF MOTION

Exercise

1. The moment of inertia of a body depends

upon

2. What is rolling friction ? How does it arise?

D Watch Video Solution

3. How can you determine co-efficient of friciton by inclined plane method?

- Watch Video Solution

4. "The total charge of the isolated system is always conserved". How?

D Watch Video Solution
5. The motion of particle of mass m is given by
$y=u t+\frac{1}{2} \mathrm{gt}^{2}$. The force acting on the particle is

- Watch Video Solution

6. Define radius of gyration. Is ti a constant quantity?

D Watch Video Solution
7. Write down the difference between mass
and moment of inertia.

D Watch Video Solution
8. What is centripetal force? Derive an expression for it. Show that centripetal force does no work.

D Watch Video Solution

9. Show that $J=m \Delta V$, where J is the impulse acting on a body of mass ma nd ΔV is the change in velocity.
10. Show that in an isolated system linear momentum is conserved.

- Watch Video Solution

11. Obtain an expression for the maximum speed with which a car can turn safely on a banked road.

D Watch Video Solution

12. Writ ethe Newton's 2nd law and explain force.

- Watch Video Solution

13. Can a body remain in rest position when external force are acting on it?
(Watch Video Solution
14. How is impulse related with linear momentum?

D Watch Video Solution
15. Why does a gun recoil when a bullet is fixed.
16. Action and reaction force do not balance each other. Why?

D Watch Video Solution
17. What is inerita at rest and inertia at motion?
(D) Watch Video Solution
18. Is friction independent of actual area of contact.

D Watch Video Solution
19. What is static and dynamic friction.

D Watch Video Solution

20. What is the relation between co-efficient of
friction and angle of repose?

- Watch Video Solution

21. Why are wheels circular?

- Watch Video Solution

22. How is impulse related with linear momentum?

D Watch Video Solution
23. Prove that $F=$ ma.

D Watch Video Solution

24. Establish the Newton's first and third law
from second law.

D Watch Video Solution

25. Vehicles stop on applying brackets. Does
these phenomeno voilat the principle of
conservation of momentum.

D Watch Video Solution

26. Briefly discuss the concept of ineritical mass.

- Watch Video Solution

27. Derive an expression for acceleration of body in inclined plane.

D Watch Video Solution
28. Why does a cyclist bend inwards while negotiating a curve ?

- Watch Video Solution

29. Calculate the work done is moving a bdoy up a rough inclined plane.
30. A force of 5 N changes the velocity of a body from $10 \mathrm{~ms}^{-1} \rightarrow 20 \mathrm{~ms}^{-1}$ in 5 sec . How much force is required to bring about the same change in 2 sec .

D Watch Video Solution

31. A bullet of mass 50 g moving with a speed
of $500 \mathrm{~ms}^{-1}$ is brought to rest in 0.1 sec . Find
the impulse and average force.
32. Two bodies whose masses are $m_{1}=50 \mathrm{~kg}$
and $m_{2} 150 g$ are tight by a string and placed in
a horizontal surface. When m_{1} is pulled by a force F and acceleration of $5 m s^{-2}$ is produced in both the bodies. Calculate the value of F and tension in the strong.

D Watch Video Solution

33. A curve road of diameter $1,8 \mathrm{~km}$ is banked
so that no friction is required at a speed of
$30 \mathrm{~ms}^{-1}$. What is the banking angle.

D Watch Video Solution

34. A car starts from rest on a half kilometer bridge. The co-efficient of friction between the tyres and road is 1 . Show that one can't drive through the bridge in less than 10 sec .

D Watch Video Solution

35. Derive an expression for acceleration of body in inclined plane.

D Watch Video Solution

36. Find the force required to move a train of mass 5000 quintals up an incline of 1 in 50 with an acceleration $2 m s^{-2}$. Take force of friciton $=.2 \mathrm{~N} / \mathrm{s}$ qunital and $\mathrm{g}=10 \mathrm{~ms} \mathrm{~s}^{-2}$.
