© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - R G PUBLICATION

MECHANICAL PROPERTIES OF SOLIDS

Exercise

1. Among solids, liquids and gases, which one
can have all the moduli of elasticity?
2. What is the unit of spring constant?

D Watch Video Solution

3. what is poisson's ratio ?
(D) Watch Video Solution
4. what is poisson's ratio?
5. Define young's modulus and describe a method of measuring its value .

D Watch Video Solution

6. Calculate the value of stress in a wire of
steel having radius of 2 mm , when 10 kN of force is applied on it.

D Watch Video Solution

7. A steel has a radius of 10 mm and a length of 1.0m. A 100 kN force stretches it along its length. Calculate stress and strain on the rod. Young's modulus of steel is $2.0 \times 10^{11} \mathrm{Nm}^{-2}$.

D Watch Video Solution

8. What is stress and strains?

9. Write the Hooks' law.

D Watch Video Solution

10. Write the dimension of strain.

- Watch Video Solution

11. what is poisson's ratio?
12. Write the relation among the modulus of elasticities.

D Watch Video Solution
13. What is Rigidily modulus of elasticity.

D Watch Video Solution

14. What do you mean by Young's modules of elasticity?

- Watch Video Solution

15. What is elastic limit.?

- Watch Video Solution

16. What is Bulk modules of elasticity?

- Watch Video Solution

17. What is shearing strain?

- Watch Video Solution

18. State hooke's law and define the various moduliii of elasticity.

D Watch Video Solution

19. With the help of graph explain the elastic
limit of a material.

D Watch Video Solution
20. Calculate the amount of work done for a wire which area of cross section $10^{-6} m^{2}$ and length 1.5 m to increase the length 4×10^{-3} m. Young's modules of elasticity $2 \times 10^{11 \mathrm{~N} / \mathrm{m}^{2}}$.

- Watch Video Solution

21. Two wire having same length and same
radius and given same load. One made of steel
and other copper. If Young's modules of elasticity is twice that of other then calculate
the potential energy stored in copper and steel.

D Watch Video Solution

22. Two wire made of same material and ratio
of their length is $1: 2$ and ratio of raidus is $2: 1$. If
they are strecthed by same force calculate the ratio of increase in length.
23. Explain which is more elastic glass and rubber.

D Watch Video Solution

24. $2 \mathrm{~m} /$ copper wire of length applying force length increase by 1 mm . If the energy of the wire is converted to heat energy, calculate the increasing $t e m p^{n}$ of the wire. $\left(\mathrm{Y}=12.5 \times 10^{\wedge} 10\right.$
$\left.\mathrm{N} / \mathrm{m}^{\wedge} 2 ; \rho=9 \times 10^{\wedge} 3 \mathrm{~kg} / \mathrm{m}^{\wedge} 3 ; \mathrm{s}=385 \mathrm{~J} / \mathrm{kg}-\mathrm{K}\right)$
25. The stress strain group for material A \& B are shown in figure

Which of the material has greater Young's modules?

D Watch Video Solution
26. The stress strain group for material A \& B are shown in figure

Which is stronger material?

D Watch Video Solution

27. A steel wire of diammeter 2 mm is pulled to
increase its length by 1% what is the restoring
force developed in it if young's modulus for steel $2 \cdot 10^{12}$ dynes/ $\mathrm{cm}^{\wedge} 2$.

D Watch Video Solution

28. Show that energy density
$=\frac{1}{2} \times$ stress \times stra \in.

- Watch Video Solution

29. Explain how Young's modules of elasticity changes with temperature.

Watch Video Solution

