

PHYSICS

BOOKS - R G PUBLICATION

MODEL QUESTION PAPER 1

1. Write the four force in nature.

Watch Video Solution

2. If the maximum error in the measurement of the radius of a sphere is

2% then what is maximum error in the calculation of volume?

3. The value of G in CGS system is $6.67 imes 10^{-8} dy
eq cm^2 g^{-2}$. Calculate

the value in SI units.

9. Derive acceleration from velocity-time graph.

10. State Newton's second law of motion. Give and state defination of the SI unit of force.

Watch Video Solution

11. Obtain an expression for the centripetal force required to make a body of mass m moving with a constant speed v around a circular path of radius r.

Watch Video Solution

12. A block of mass 0.1 kg is held against a wall by applying a horizontal force of 5N on the block. If the coefficient of friction between the block and the wall is 0.5, what is the magnitude of the frictional force acting on the block?

13. A block of mass 2 kg is placed on the floor. The coefficient of friction is

0.4. If a force of 2.5 is applied on the block horizontally, what will be the state of block. Give reason.

Watch Video Solution

14. A ball moving with momentum of $5kgms^{-1}$ strikes against a wall at an angle 45° and is reflected at the same angle. Calculate the change in momentum.

Watch Video Solution

15. In a head on elastic collision of two bodies of equal masses

16. State the work-energy theorem

17. A force F = (10 + 0.50x) acts on a particle in the x direction, where F is in newton and x in meter. Find the work done by this force during a displacement form x=0 to x=2.0m

Watch Video Solution

18. Starting from the relation `', establish the law of conversation of angular momentum.

19. Three point masses m_1, m_2 and m_3 are located at the vertices of an equilateral triangle of side α . What is the moment of inertia of the

system about an axis along the altitude of the triangle passing through

 m_1 ?

Watch Video Solution					
22. Deduce Newton's law of gravitation from Kepler's third law.					
Watch Video Solution					
23. Write the three necessary conditions for a satellite to be geostationary.					
Watch Video Solution					
24. Write the significance of negative total eneragy of a satellite?					
Watch Video Solution					

25. What is anomalous expansion of water?

Watch Video Solution
26. How does surface tention change with temperature?
Watch Video Solution
27. Calculate the amount of heat required to vaporise 1g of ice initially at $0^{\circ}C$.
Watch Video Solution
28. Write the basic difference between liquid and gas.

29. What is surface tension of a liquid ? Show that the surface tension of

a liquid is numerically equal to the sueface energy per unit area.

0	Watch '	Video	Solution	
---	---------	-------	----------	--

30. Derive Stockes' law by dimensional analysis.

31. What do you mean by breaking stress? The breaking stress for a metal is 7.8xx10^9 Nm^-2.Calculate the maximum length of the wire made of this metal which may be suspended without breaking. The density of the metal $=7.8xx10^3$ kg m^-3,g=10ms^-\2'.

32. Why does a gas not posses a single specific heat? Explain why C_p 'isgreaterthanC v'?

33. Three moles of an ideal gas at a constant temperature of 300K is compressed from a volume of 4 litres to 1 litre. Calculate the work done in the process. Given $R = 8.31 Jmol^{-1}K^{-1}$.

Watch Video Solution

34. An ideal gas is taken through the cycle $A \rightarrow B \rightarrow C \rightarrow A$ 'asshown. If the \neq theat \supset lied \rightarrow thegas \in thecyc \leq CrarrA'. Give the interpretation of the result.

37. Explain the kinetic interpretation of temperature

Watch Video Solution

38. A simple harmonic motion is represented by x=10sin (20t+0.5) where x is in metre and t is in second. Find its amplitude, angular frequency, frequency and time period.

Watch Video Solution

39. Two springs are connected in parallel as shown. If the mass is displaced from its equilibrium position and released. What is the

resultant frequency of vibration?

Watch Video Solution

40. Describe the first and second mode of vibrations of an open organ

pipe.

н.

41. A metal wire of linear mass density of 9.8 gm^{-1} is stretched with a tension of 10kg wt between two rigid supports of 1 metre apart. If the wire is allowed to vibrate in its fundamental frequency, then find the frequency of vibration.

Watch Video Solution

42. Define free oscillation demped oscillation and forced oscillation.