©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - R G PUBLICATION

MODEL QUESTION PAPER 2

Exercise

1. Define systematic error

(D)
 Watch Video Solution

2. The resistance $R=\frac{\nu}{I} \quad$ where
$V=(100 \pm 5) V$ and $I=(10 \pm 0.2) A$,
calculate ERRORIN the resistance.

D Watch Video Solution

3. When you shake hand with you friend, what kind of force do you exert?

D Watch Video Solution

4. Find the dimensional formula of G.

D Watch Video Solution

5. A particle is displaced from the point A
$(-2,0,1)$ to thp point $B(1,3,-3)$ Find the magnitude of displacement.

- Watch Video Solution

6. Establish the relation $\mathrm{S}=\mathrm{ut}+\frac{1}{2} a t^{2}$, using calculus.

D Watch Video Solution

7. A body travels through 15 m in the 5 th 1 sec

 and 25 m in the 10 th sec of its motion. Find its displacement in 7 sec .
D Watch Video Solution

8. Identify thp motions described, by the graphs.

- Watch Video Solution

9. A body is projected in, such a way that it just crosses, a wall of height ,10m at a distance of 20 m and falls at a distance of 40 m from the wall. Find the velocity of projection

D Watch Video Solution

10. Obtain an expression for the centripetal force required to make a body of mass m moving with a constant speed v around a circular path of radius r.
11. Calculate the angular speed of the hour's hand of your watch.

- Watch Video Solution

12. Write the dimensional formula of impluse.
(Watch Video Solution
13. WHY Cricketers move their hands backward while holding a catch.

D Watch Video Solution
14. It is easier to pull a lawn mower than to push it.

D Watch Video Solution

15. State work energy principle.

- Watch Video Solution

16. Give an example of negative work

D Watch Video Solution
17. A ball is dropped from a height of 20 m . it rebounds to a height on 10 m . Calculate the loss of energy of the ball
18. Show that in two demensional elastic I collision between two bodies of equal mass and one body initialy at rest, they move at an angle of $\frac{\pi}{2}$ after collision.

D Watch Video Solution

19. Define centre of mass. Find the centre of mass of a triangular lamina.

D Watch Video Solution

20. Starting from the relation ', establish the law of conversation of angular momentum.

D Watch Video Solution

21. Derive the expression of escape speed.

D Watch Video Solution

22. Find the expression of acceleration due to gravity at a depth d below the surface of the earth.
23. Find the potential energy of a system of four particles each of mass m placed at the vertices of a square of side I.

D Watch Video Solution

24. State Bernoulli's theorem. Establish it on the basis of work-energy theorem.
25. Calculate the excess pressure inside a|
liquid drop of radious r and surface tension T.
What is the expression of I excess presure inside a soap bubble?

D Watch Video Solution

26. The average depth of India Ocean is about

3 km . Calculate the bulk strain produced in
water at the bottom of the ocean. Given that
bulk
$2.2 \times 10^{9} \mathrm{Nm}^{-2}\left(\right.$ take $g=10 \mathrm{~ms}^{-2}$

D Watch Video Solution

27. At what temperature both the Celsius and

Fahrenheit scales give the same reading?

- Watch Video Solution

28. Establish, the relation $\gamma=3 \alpha$

29. Establish the relation $C_{p}-C_{v}=R$

D Watch Video Solution

30. Find the expression of adiabatic work done.

D Watch Video Solution
31. A carnot's engine has an efficiency of 50%
when its sinks temperature is 27 degree C
what must be the change in its source temperature for increasing its efficiency of 60\%?

D Watch Video Solution

32. For a poly-atomoic gas esatblish the
relation $\gamma=1+\frac{2}{f}$
33. What is the interpretation of temperature on the basis of kinetic theory of gas?

D Watch Video Solution

34. Calculate the root mean square speed of gas particles each of mass $5 \times 10^{-17} \mathrm{~kg}$ at $N T P\left(K_{B}=1.38 \times 10^{-23} J K^{-1}\right]$

D Watch Video Solution

35. A point particle of mass 0.1 kg is excecuting

SHM of amplitude 0.1m. When the particle passes through the mean position, its kinetic energy is $8 \times 10^{-3} \mathrm{~J}$. Obtain the equation of motion of the particle if the initial phase'of oscillation is 45°.

D Watch Video Solution

36. Write down Newton's formula for velocity of sound and state the laplace's correction.
37. Draw the representative diagram to show the formation of 3 rd and 5 th harmonics in a closed organ pipe.

D Watch Video Solution

38. A siren is fitted on a car going towards a
vertical wall at a speed of $36 \mathrm{kmh}^{-1}$. A person
standing on the ground behind the car, listeners to the siren sound coming directly from the source as well as that coming after
reflection from the wall. Calculate the apparant frequencies of both the sounds.

Velocity of sound $340 \mathrm{~ms}^{-1}$, frequency of the siren 500 Hz .

- Watch Video Solution

39. The displacement y of a particle in a medium can be expressed as $y=10^{-6}$ $w \operatorname{Sin}(100 t+20 x)$, where t and x are in second and metre respectively. Calculate the speed of the wave.

Watch Video Solution

40. The length of a sonometer wire is 0.75 m and density $9 \times 10^{3} \mathrm{kgm}^{-3}$. It can bear astress of $8.1 \times 10^{8} \mathrm{Nm}^{-2}$ without exceeding the elastic limit Calculate the fundamental frequency that can be produced in the wire.

- Watch Video Solution

