

PHYSICS

BOOKS - R G PUBLICATION

MODEL QUESTION PAPER 3

Exercise

1. What are the dimensions of surface tension?

2. Given that the velocity of sound in a medium depends on the modulus of elasticity and the density of the medium, find an expression for velocity of sound by dimensional analysis.

Watch Video Solution

3. The length, breadth and height of a rectangular block of wood were measured to be

 $l=12.13\pm0.02cm,\,b=8.16\pm0.01cm,\,h=3.46\pm0.01cm$

. Determine the precentage error in the volume of the block upto two significant figures.

4. When is the average speed of an object equal to the magnitude of its average velocity?

Watch Video Solution

5. The acceleration of a particle in ms^{-s} is given by $a=3t^2+2t+2$, where time t is in seconds. If the particle starts with a velocity $V=2ms^{-1}$ at t=0, find the velocity after 2 seconds.

Watch Video Solution

6. A balloon ascending at the rate of $9.8ms^{-1}$ is at a height of 39.2 m above the ground when a packet is

dropped from the baloon. After how much time and with what velocity does it reach the ground? $g=9.8ms^{-2}.$

7. A body is projected such that its kinetic energy at the top of its trajectory is $\frac{3}{4}$ of its initial kinetic energy. What is the angle of projection of the projectile?

8. Show that the trajectory of projectile is parabolic.

9. If \bar{a} and \bar{b} are unit vectors and θ is the angle between them, show that $\frac{1}{2}[\bar{a}-\bar{b}]=\sin\frac{\theta}{2}$

Watch Video Solution

10. Find a unit vector which is perpendicular to both the vectors $2\hat{i}+\hat{j}-\hat{k}$ and $3\hat{i}+4\hat{j}-\hat{k}$.

Watch Video Solution

11. State the laws of static friction. What is limiting friction?

12. A body of mass 2kg is lying on a rough inclined plane of inclination 30° . Find the magnitude of the force needed to make the block move up the incline. Coefficient of static friction is 0.2

Watch Video Solution

13. A body of mass 2kg is lying on a rough inclined plane of inclination 30° . Find the magnitude of the force needed to make the block move down the incline.

14. Define impulse. A machine gun of 10kg mass fires 25 gm bullets at the rate of 5 bullets per second with a speed of $500ms^{-1}$. What force must be applied to the gun to hold it in position.

Watch Video Solution

15. Define 1 newton force. A balloon with mass 6 kg is descending down with an acceleration $5ms^{-2}$. Calculate the mass of its contents that must be removed so that it starts moving up with the same acceleration.

16. Calculate the angle of banking for a circlular track of radius R for vehicles moving with a speed v.

17. State and prove work-energy theorem.

18. A block of mass 4 kg irioving horizontally on a frictionless table at speed $2ms^{-1}$ compresses a spring through a distance 10 cm before its speed is halved. Find the spring constant of the spring.

19. The bob of a simple pendulum of length 1 m is' pulled aside from its equilibrium' position through an angle 60° and released. Calculate the speed at which the bob passes the equilibrium position.

Watch Video Solution

20. What is co-efficient of restitution? A woodenball is dropped from a height of 2m. What is the height upto which the ball will rebound if the co-efficient of restitution is 0.5?

21. When is a collision said to be a perfectly inelastic? A mass is moving with speed v collides inelastically with another identical mass at rest. After collision, the first mass moves with velocity $\frac{\nu}{\sqrt{3}}$ in a direction perpendicular to the initial direction of motion. Find the speed of the second mass after collision.

Watch Video Solution

22. Two bodies of masses 10kg and 2 kg are moving with velocities $2\hat{i}-7\hat{j}+3\hat{k}ms^{-1}$ and $-10\hat{i}+-35\hat{j}-3\hat{k}$ respectively. Find the velocity of the centre of mass.

23. Deduce the relation $au=rac{dL}{dt}$ relation the torque on a particle with its angular momentum.

Watch Video Solution

24. Find the torque due to a force $\left(7\hat{i}-3\hat{j}-5\hat{k}\right)N$ about the origin acting on a paticle whose position vector is $\left(\hat{i}+\hat{j}-\hat{k}
ight)m$

Watch Video Solution

25. Define radius of gyration of a rigid body. What is the radius of gyration of a solid sphere of mass 1 kg and radius 50 cm?

26. A solid cylinder rolles down an inclined plane. Its mass is 2 kg and radius 0.1 m. If the height of the inclined plane is 4m, what is its rotational kinetic energy when it reaches the bottom.

Watch Video Solution

27. State Newton's law of universal gravitation and hence define the universal gravitational constant G. What is its value?

28. The radius of the Moon is $\frac{1}{4}^t h$ the radius of the earth and its mass is $\frac{1}{96}^t h$ the mass of the earth. If the escape velocity from the surface of the earth is $11.2kms^{-1}$, find the escape velocity from the surface of the Moon.

Watch Video Solution

29. Show how the acceleration due to gravity of the earth varies with depth from the surface of the earth.

Watch Video Solution

30. A planet's year is 11 times the earth's year. Calculate the distance of this planet from the sun if the distance of

the earth is $1.50 imes 10^8$ km from the sun.

31. State hooke's law and define the various moduliii of elasticity.

32. State Pascal's law of transmission of pressure through a confined fluid. Name two applications of Pascal's law.

33. State and prove Newton's law of cooling.

Watch Video Solution

34. 27 identical drops of water are falling down vertically in air with a terminal velocity 0.15m/s. If they combine to from a single bigger drop, what will be its terminal velocity.

Watch Video Solution

35. A liquid cools from 60°C to 40°C in 10 minute what is the temperature of liquid in next 10 minute where temperature is surrounding in 5°C

36. A solid floats in water with $\frac{3}{4}^t h$ of its volume below the surface of water, Calculate the density of the solid.

Watch Video Solution

37. Show that work done by a stretching force in producing an extension in the wire is given by $W=\frac{1}{2}\times stret\chi ngf \text{ or } ce\times extension.$

38. 75 g of water at $100^{\circ}C$ is added to 20 g of ice at $-15^{\circ}C$. Calculate the resulting temperature, give that latent heat of $ice=80calg^{-1}C^{-1}$ and specific heat of $ice=0.5calg^{-1}C^{-1}$.

Watch Video Solution

39. Prove that the pressure exerted by an ideal gas given by $P=rac{1}{3}
ho v^2.$

Watch Video Solution

40. Show that the molar volume of an ideal gas at STP is 22.4 litres. Given $R=8.31 Jmol^{-1}K^{-1}$.

41. What is meant by degree of freedom?

Watch Video Solution

42. Calculate rms velocity of an oxygen molecule at $27^{\circ} C$, atomic weight of oxygen being 16. (27°)

Watch Video Solution

43. A SHM is represented by $y(t) = 5 \sin(20t + 0.5)$ m where t is in S. What is amplitude and time period.

vateri video Solution

44. Find the expression of time period of a simple pendulum of length l.

Watch Video Solution

45. A particle of mass 10 g executing SHM has a velocity of $6cms^{-1}$ after one second of its starting from the mean position. If the time period is 6 seconds, find its maximum kinetic energy.

46. Write down Newton's formula for velocity of sound and state the laplace's correction.

Watch Video Solution

47. At what temperature will the velocity of sound in air be double than the velocity in air at 22° C?

48. What is the fundamental frequency at $20^{\circ}C$ of an open pipe of length 120 cm? The velocity of sound in air at $20^{\circ}C$ is 343m/s.

49. State the first law of thermodynamics.

Watch Video Solution

50. Find the pressure required to compress a gas adiabatically at atmospheric pressure to one fifth of.its volume. Given $\Box=1.4,\log_e 5=0.6990.$

Watch Video Solution

51. Explain the operations of a Canot heat engine working between two temperatures and derive its effeciency.

Watch video Solution

52. Calculate the efficiency of a Canot engine operating between 450 K and 300K.

