©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - R G PUBLICATION

MOTION IN A STRAIGHT LINE

Exercise

1. What is the difference between average
velocity and instantaneous velocity?
2. Write donw the equations of motion in circular path.

D Watch Video Solution

3. A ball is projected vertically upward with a speed of $50 \mathrm{~m} / \mathrm{s}$. Find the maximum height.

D Watch Video Solution

4. A ball is projected vertically upward with a speed of $50 \mathrm{~m} / \mathrm{s}$. Find the time to reach the maximum height,

D Watch Video Solution

5. A ball is projected vertically upward with a speed of $50 \mathrm{~m} / \mathrm{s}$. Find (a) the maximum
height, (b) the time to reach the maximum height, (c) the speed at half the maximum height. Take $g=10 \mathrm{~ms}^{2}$.
6. During $n^{\text {th }}$ second of its motion a body covers a distance S_{n} with uniform acceleration 'a' and initial velocity 'u'. Show that
$\left(a=\frac{2 S_{n}-2 u}{2 n-1}\right)$

- Watch Video Solution

7. Explain the difference between distance and displacement with an example.
8. Derive acceleration from velocity-time graph.

D Watch Video Solution

9. A stone falls from the top of a building and travels 53.9 m in the last second before it reaches the ground. Find the height of the building.
10. Explain the difference between distance and displacement with an example.

D Watch Video Solution

11. Derive acceleration from velocity-time graph.

D Watch Video Solution

12. The motion of particle of mass m is given by $y=u t+\frac{1}{2} \mathrm{gt}^{2}$. The force acting on the particle is

- Watch Video Solution

13. Deduce the equations of motion for constant acceleration using method of calculus.
14. A particle is moving in a straight line. Its displacement at any instant t is given by $x=10 t+15 t^{3}$, where x is in meters and t is in seconds. Find
(i) the average acceleration in the intervasl $\mathrm{t}=$

0 to $t=2 s$ and
(ii) instantaneous acceleration at $\mathrm{t}=2 \mathrm{~s}$.

- Watch Video Solution

15. Can a body have a constant speed and still have a varying velocity?
16. What will be the nature of velocity time graph for a uniform motion?

- Watch Video Solution

17. Under what conditions is the average velocity equal to instantaneous velocity.
18. Can displacement be grater than distance travelled by an object?

- Watch Video Solution

19. Draw the position-time graph of a stationary object.

- Watch Video Solution

20. Under which condtion the distance travelled by a body is equal to the displacement of the body?

D Watch Video Solution

21. Two straight line draw on the same
displacement-time graph make angle 30° \& 60° with time axis. Which line represent greater velocity.
22. A person travelling on a straight line moves with a uniform velocity v_{1} for some time and with uniform velocity v_{2} for the next equal time. The average velocity v is given by

D Watch Video Solution

23. The position of a moving particle is given by $x=6+18 t+9 t^{2}$ where x is the distance and t is the time. What is the velocity at $\mathrm{t}=$ 2 sec.

- Watch Video Solution

24. The displacement x of the body in a motion
is given by $\mathrm{x}=\mathrm{Asin}(w t+\theta)$. Determine at which instant displacement maximum.

- Watch Video Solution

25. A particle is moving in a circular path of radius r. What will be the displacement and distance traversed after half a circle ?
26. Two train 100 m and 89 m in length are running in opposite directions with a velocity
$40 \mathrm{~km} / \mathrm{hr}$ and $30 \mathrm{~km} / \mathrm{hr}$. At what time they will completely cross each other.

D Watch Video Solution

27. The distance x of a particle moving in one
dimension, under the action of constant force
is related to time t by equation. $\mathrm{t}=\sqrt{x}+3$
where x in metre and t in second. Find the
displacement of the particle when its velicity is zero.

D Watch Video Solution

28. A train 100 m long is moving with a velocity
of $60 \mathrm{~km} / \mathrm{hr}$. Find the time it takes to cross the bridge 1 km long.
29. A ball thrown vertically upward with a speed of $19.6 \mathrm{~ms}^{-1}$ from the top of a tower returns to earth in 6 sec . Find the height of tower.

D Watch Video Solution

30. Derive $S=u t+\frac{1}{2} a t^{2}$ by graphical method.

D Watch Video Solution
31. Displacement is given by $x=1+2 t+3 t^{2}$

Calculate the value of instantaneous acceleration.

- Watch Video Solution

32. Prove that $S_{u h}=u+\frac{a}{2}(2 n-1)$

- Watch Video Solution

33. From the graph calculate the average acceleration in first twenty sec.

- Watch Video Solution

34. The relation between time t and displacement x is $t=\alpha x^{2}+\beta x, \quad$ where α and β are constants. The retardation is
35. What is the wrong with the speed time

graph from

- Watch Video Solution

36. A ball is dropped from the top of a tower of height (h). It covers a distance of $h / 2$ in the last second of its motion. How long does the ball remain in air?

- Watch Video Solution

37. For a particle in one dimensional motion,
the instantaneous speed is always equal to the magnitude of instantaneous velocity. Why?
38. A particle experiences constant acceleration for 20 sec after starting from rest.

If it travels a distance S_{1} in first 10 sec. and distance S_{2} in next 10 sec find the relation between S_{1} and S_{2}.

D Watch Video Solution

39. Prove that $V-u=2$ as from velocity time graph.

