©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - R G PUBLICATION

OSCILLATIONS

Exercise

1. At what position, velocity of a particle in

SHM is maximum?

2. What is resonance?

D Watch Video Solution

3. What is the unit of spring constant?
(Watch Video Solution
4. Find the expression of time period of a simple pendulum of length I.

- Watch Video Solution

5. A mass m attached to a spring oscillates
with a period of 2 seconds. If the mass is increased by 2 kg , the period increases by one second. Find the mass m.

- Watch Video Solution

6. Prove that the sum of potential and kinetic energies of a body in SHM is constant

Watch Video Solution

7. Show that the motion of a loaded spring is simple harmonic. Find an expression for its time period.

D Watch Video Solution

8. Distinguish with illustrations between free and forced oscillations. What is a resonance?
9. Prove that the sum of potential and kinetic energies of a body in SHM is constant

D Watch Video Solution

10. Calculate the potential energy in a spring.

D Watch Video Solution

11. Deduce the expression for velocity, acceleration and time period of a particle
executing a S.H.M.

D Watch Video Solution

12. Define a simple harmonic motion.

D Watch Video Solution
13. What is phase in periodic motion?

- Watch Video Solution

14. What is the difference between periodic motion and oscillatroy motion.

- Watch Video Solution

15. In a simple harmonic motion at what position the acceleration becomes zero.

D Watch Video Solution

16. At what position, velocity of a particle in

SHM is maximum?
17. What is second pendulum?

- Watch Video Solution

18. What is the phase constant between displacement and acceleration in SHM.
19. Write the general standard equation of SHM.

- Watch Video Solution

20. What is the graphical representation of SHM?

- Watch Video Solution

21. How force is related with displacement in SHM?

D Watch Video Solution

22. A particle has maximum velocity 100
$\mathrm{cm} / \mathrm{sec}$. and maximum acceleration
$157 \mathrm{~cm} / \mathrm{sec}^{2}$ and particle is an SHM. What is
the time period.
23. The time period of $S H M$ is 8 sec . At what
time from mean position kinetic energy becomes half of its potential energy.

D Watch Video Solution

24. A SHM is represented by $\mathrm{y}=10 \mathrm{sin}$
$\left(10 t-\frac{\pi}{6}\right)$ metres. Calculate its frequency,
time period, maximum velocity and maximum acceleration.
25. If an SHM the velocity of a particle is u_{1}
and u_{2} from the mean position x_{1} and x_{2}
shwo that time period $T=2 \pi \sqrt{\frac{x_{2}^{2}-x_{1}^{2}}{u_{1}^{2}-u_{2}^{2}}}$.

D Watch Video Solution

26. A mass m attached to a spring oscillates
with a period of 2 seconds. If the mass is
increased by 2 kg , the period increases by one second. Find the mass m.
27. The acceleration due to gravity on the surface of a moon is $1.7 m s^{-2}$. What is the time period of simple pendulum on the surface of moon if the time period on surface of earth in 3.5 sec .

D Watch Video Solution

28. A body is SHM with an amplitude 5 cm and period of 2 sec . Find the acceleration and
velocity of the body when the displacement is 5 cm

D Watch Video Solution

29. A body is SHM with an amplitude 5 cm and period of 2 sec . Find the acceleration and velocity of the body when the displacement is 2 cm
30. A body is SHM with an amplitude 5 cm and period of 2 sec . Find the acceleration and velocity of the body when the displacement is 0 cm

D Watch Video Solution

31. Calculate the expression of velocity
$V=\omega \sqrt{a^{2}-y^{2}} . \operatorname{In} \mathrm{SHM}$.
32. Show that is SHM force is directly proportional to the displacement.

D Watch Video Solution

33. Establish the relation $T=2 \pi \sqrt{1} / g$ for the
time period of a simple pendulum with the help of dimensional analysis.

- Watch Video Solution

34. Show that motion of a simple pendulum is

 simple harmonic.- Watch Video Solution

35. Write the general standard equation of SHM.
36. Calculate the total energy of a simple harmonic motion.

- Watch Video Solution

37. How motion of a loaded spring is simple harmonic?

D Watch Video Solution
38. Show that acceleration $A \alpha-y$ where y is
the displacement to SHM.

- Watch Video Solution

39. Establish the relation $T=2 \pi \sqrt{1} / g$ for the
time period of a simple pendulum with the help of dimensional analysis.

D Watch Video Solution
40. Establish the differential equation of SHM.

D Watch Video Solution

41. Calculate the ratio of kinetic energy and potential energy at the equilibrium in SHM.
(time $=\mathrm{T} / 12$)

D Watch Video Solution
42. What should be the length of second pendulum of Guawahati.

- Watch Video Solution

43. Show that a small amplitude, the motion of simple pendulum is $S H M$.

- Watch Video Solution

