

PHYSICS

BOOKS - R G PUBLICATION

OSCILLATIONS

1. At what position, velocity of a particle in

SHM is maximum?

5. A mass m attached to a spring oscillates with a period of 2 seconds. If the mass is increased by 2 kg, the period increases by one second. Find the mass m.

6. Prove that the sum of potential and kinetic

energies of a body in SHM is constant

7. Show that the motion of a loaded spring is simple harmonic. Find an expression for its time period.

Watch Video Solution

8. Distinguish with illustrations between free

and forced oscillations. What is a resonance?

9. Prove that the sum of potential and kinetic

energies of a body in SHM is constant

11. Deduce the expression for velocity, acceleration and time period of a particle

14. What is the difference between periodic

motion and oscillatroy motion.

15. In a simple harmonic motion at what

position the acceleration becomes zero.

Watch Video Solution

16. At what position, velocity of a particle in SHM is maximum?

19. Write the general standard equation of SHM.Watch Video Solution

20. What is the graphical representation of

SHM?

21. How force is related with displacement in SHM?

22. A particle has maximum velocity 100 cm/sec. and maximum acceleration $157cm/\sec^2$ and particle is an SHM. What is the time period.

23. The time period of SHM is 8 sec. At what time from mean position kinetic energy becomes half of its potential energy.

Watch Video Solution

24. A SHM is represented by $y = 10 \sin \left(10t - \frac{\pi}{6}\right)$ metres. Calculate its frequency, time period, maximum velocity and maximum acceleration.

25. If an SHM the velocity of a particle is u_1 and u_2 from the mean position x_1 and x_2 shwo that time period $T=2\pi\sqrt{rac{x_2^2-x_1^2}{u_1^2-u_2^2}}.$

Watch Video Solution

26. A mass m attached to a spring oscillates with a period of 2 seconds. If the mass is increased by 2 kg, the period increases by one second. Find the mass m.

27. The acceleration due to gravity on the surface of a moon is $1.7ms^{-2}$. What is the time period of simple pendulum on the surface of moon if the time period on surface of earth in 3.5 sec.

Watch Video Solution

28. A body is SHM with an amplitude 5cm and period of 2sec. Find the acceleration and

velocity of the body when the displacement is

5 cm

29. A body is SHM with an amplitude 5cm and period of 2sec. Find the acceleration and velocity of the body when the displacement is 2cm

30. A body is SHM with an amplitude 5cm and period of 2sec. Find the acceleration and velocity of the body when the displacement is

0 cm

31. Calculate the expression of velocity

$$V=\omega\sqrt{a^2-y^2}.$$
 In SHM.

32. Show that is SHM force is directly

proportional to the displacement.

Watch Video Solution

33. Establish the relation $T = 2\pi\sqrt{1}/g$ for the time period of a simple pendulum with the help of dimensional analysis.

34. Show that motion of a simple pendulum is

simple harmonic.

Watch Video Solution

35. Write the general standard equation of SHM.

36. Calculate the total energy of a simple harmonic motion.

 Watch Video Solution

37. How motion of a loaded spring is simple

harmonic?

38. Show that acceleration Alpha-y where y is

the displacement to SHM.

Watch Video Solution

39. Establish the relation $T = 2\pi\sqrt{1}/g$ for the time period of a simple pendulum with the help of dimensional analysis.

40. Establish the differential equation of SHM.

41. Calculate the ratio of kinetic energy and potential energy at the equilibrium in SHM. (time=T/12)

42. What should be the length of second

pendulum of Guawahati.

Watch Video Solution

43. Show that a small amplitude, the motion of

simple pendulum is SHM.