©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - R G PUBLICATION

SYSTEM OF PARTICLES AND

ROTATIONAL MOTION

Exercise

1. What is the physical significance of moment of inertia?
2. Establish the relation between torque and angular momentum.

- Watch Video Solution

3. Define moment of inerita of a rigid body capable of rotation about an axis. State its physical significance.
4. Establish a relation between angular momentum, moment of inertia and angular velocity.

D Watch Video Solution

5. Establish a relation between linear velocity and angular velocity.
6. Find the torque of a force
$\vec{F}=7 \hat{i}+3 \hat{j}-5 \hat{k}$ about the point whose position vector is $\vec{r}=\hat{i}-\hat{j}+\hat{k}$.

D Watch Video Solution

7. Establish the relation between torque and angular momentum.

D Watch Video Solution
8. A car is moving form rest. After 10 seconds
its wheels rotate 360 times in 1 minute. If the
radius of the wheel is 50 cm . Then find angular acceleration

- Watch Video Solution

9. A car is moving from rest. After 10 seconds
its wheels rotate 360 times in 1 minute. If the radius of the wheel is 50 cm . Then find angular velocity after 30 seconds.
10. Define radius of gyration. Is ti a constant quantity?

D Watch Video Solution

11. Write down the difference between mass
and moment of inertia.
12. Establish a relation between angular momentum, moment of inertia and angular velocity.

D Watch Video Solution

13. Show that the total linear momentum of a system of particles is equal to the product of the total mass of the system and the velocity of its centre of mass.
14. what is law of conservation of linear momentum?

- Watch Video Solution

15. What do you mena by centripetal force?

What is its direction?

D Watch Video Solution
16. Calculate the moment of inertia of a rod of mass M, length I about an axis perpendicular to it through one end.

D Watch Video Solution

17. What is centre of mass? Show that centre of mass of a system of particles is defined as the point whose position vec is given by $\vec{R}=\frac{\Sigma m_{1} \vec{r}_{\square}}{M}$
18. Define moment of inerita of a rigid body capable of rotation about an axis. State its physical significance.

D Watch Video Solution

19. What is the relation between kinetic energy
and moment of inerita for a rotational body?

D Watch Video Solution

20. Define radius of gyration. Is ti a constant quantity?

D Watch Video Solution
21. What is the relation between linear momentum and angular momentum?

- Watch Video Solution

22. what is law of conservation of angular momentum .
23. What is moment of inertia of a solid sphere about its diameter.

- Watch Video Solution

24. What is the dimension of moment of inertia? Is it vector?
25. A dise of metal is melted and make a solid sphere. What will happen to moment of inertia about the axis passing through centre?

- Watch Video Solution

26. Two solid sphere of the same mass and same radius, one solid and other hollow.

Which one have greater moment of inertia about a diameter?
27. What are the factors on which moment of inertia of a body depend?

D Watch Video Solution

28. Two circular disc A and B of same mass and sam ethickness are made of two different
metals.
Whose
densites
are
d_{A} and $d_{B}\left(d_{A}>d_{b}\right)$. Which is greater
I_{A} or I_{n}.
29. Establish the relation between torque and moment of inertia.

- Watch Video Solution

30. Write the parellel and perpendicular axis
theorem.

- Watch Video Solution

31. If the radius of earth becomes half of it's
present radius how many times decrease in a day.

D Watch Video Solution

32. Show that angular momentum is conserved.

D Watch Video Solution
33. The moment of inertia of two rotating bodies A and B are I_{A} and $I_{B}\left(I_{a}>I_{B}\right)$ and the angular momenta are equal. Which one has greater K.E.

- Watch Video Solution

34. Calculate the moment of inertia of earth about its diamter taking mass $10^{\wedge} 25 \mathrm{~kg}$ and diameter 12800km.
35. What is the physical significance of radius of gyration.
(Watch Video Solution
36. Prove that $I=2 \times K E$ of rotation.
(Watch Video Solution
37. Calculate the moment of inertia of a circular disc passing through centre and perpendicular to its plane.

D Watch Video Solution

38. Show that the value of co-efficient of friction is greater than $\frac{1}{3} \tan \theta$ for a cylinder rotationing in an inclined in an inclined plane without slipping.
39. Prove and write the perpendicular axis theorem.

- Watch Video Solution

40. Calculate the moment of inertia of a ring about in axis passing through centre and perpendicular to its plane.
41. Prove that angular momentum $L=I \omega$.

- Watch Video Solution

42. Show that the value of co-efficient of
friction is greater than $\frac{1}{3} \tan \theta$ for a cylinder rotationing in an inclined in an inclined plane without slipping.
