

PHYSICS

BOOKS - R G PUBLICATION

THERMODYNAMICS

Exercise

1. State and explain zeroth law of thermodynamics .

2. State and explain zeroth law of thermodynamics .

Watch Video Solution

3. What are the specific heat capacities of an ideal gas for an isothermal and an adiabatic process?

4. obatain the adiabiatic equation PV^{γ} =constatnt from the first law of thermodynamics .

Watch Video Solution

5. Show that $C_P-C_V=R$

6. When 0.15 kg of ice at $0^{\circ}C$ mixed with 0.30 kg of water at $50^{\circ}C$ in a container, the resulting temperature is $6.7^{\circ}C$. Calculate the latent heat of fusion of ice. Given $S_{water} = 4186Jkg^{-1}K^{-1}$.

Watch Video Solution

7. What is reversible and irreversible processes

?

8. Define isothermal and adiabatic processes. State the second law of thermodynamics.

Watch Video Solution

9. obtain the expression for work done in adiabatic expansion .

10. Describe heat engine. Define efficieny of heat engine. Mention two reasons for which the efficiency of a heat engine becomes low.

Watch Video Solution

11. State and explain zeroth law of thermodynamics .

12. What is reversible and irreversible processes?

13. State the first law of thermodynamics.

14. Write third law of thermodynamics.

15. Write the expression of efficency of Carnot engine.

Watch Video Solution

16. What is the relation between heat and work?

17. Define isothermal and adiabatic processes.

State the second law of thermodynamics.

Watch Video Solution

18. What is entropy?

Watch Video Solution

19. state the second law of thermodynamics.

20. What is thermodynamic equilibrium?

Watch Video Solution

21. Sate and explain first law of thermodynamic.

22. what are limitations of first law of thermodynamics.

Watch Video Solution

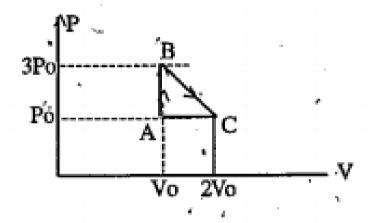
23. What is Carnot engine and what is its efficency?

24. Calculate the amount of heat produced when 2kg substance pulled in a floor with a velocity 2m/s in 5 sec.

Watch Video Solution

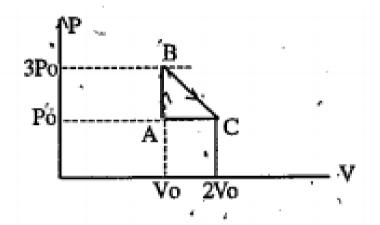
25. Calculate the amount of work done on 1gm-mole gas at $27^{\circ}\,C$ when volume increase twice isothermally.

26. In a Carnot engine temperature of the source and sink is 500 K and 375 K. The engine can absorb 600 kcal heat in one cycle. Calculate the efficiency and work done in a cycle.

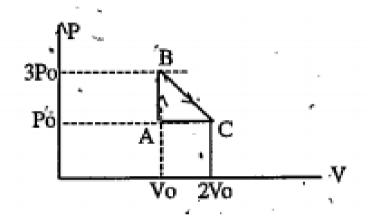


Watch Video Solution

27. Calculate the entropy change when 50 gm water changes the temperature from $0^{\circ}C \rightarrow 40^{\circ}C$.


28. One mole of a gas is taken through a cycle as shown in figure calculate. Amount of work done by the gas

29. One mole of a gas is taken through a cycle as shown in figure calculate.


the amount of heat absorb in AB path.

30. One mole of a gas is taken through a cycle as shown in figure calculate.

Total amount of heat absorb in BC path.

31. An ideal gas system undergoes an isothermal process, then the work done

Watch Video Solution 32. Calculate the amount of work done is an adiabatic process. **Watch Video Solution 33.** What is Carnot engine and what is its

efficency?

during the process is

34. What is refregerator. Explain the working principle on the basis of Carnot engine.

Watch Video Solution

35. The efficiency of a Carnot engine is $\frac{1}{6}$ when temperature if the sink decrease by 65K its efficiency becomes $\frac{1}{3}$. Calculate the initial and final temperature.

36. Write three statements for 2nd law of thermodynamics.

Watch Video Solution

37. The specific heat of water is

