©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - R G PUBLICATION

UNITS AND MEASUREMENTS

Exercise

1. Light year is a unit of
2. Find the relative error in x, if $x=a^{4} b^{1 / 3} / c d^{3 / 2}$

D Watch Video Solution

3. The dimension of impulse is

D Watch Video Solution

4. The resistance $R=\frac{V}{I}$, where $V=\left(100+_{5}\right)$ volts and $I\left(10+_{0.2}\right)$ ampers.

Find the percentage error in R .

D Watch Video Solution

5. Find the relative error in x, if
$x-a^{4} b^{1 / 3 / c d^{3} / 2}$

D Watch Video Solution

6. The temperatures of two bodies measured
$\begin{array}{cc}\text { by } & \text { a } \\ t_{1}=40^{\circ} C+{ }_{1} C \text { and } t_{2}=80^{\circ} C+{ }_{1}^{\circ} C .\end{array}$
are

Calculate the temperature difference and the error there in.

D Watch Video Solution

7. The distance covered by a particle in time t is given by $x=a+b t+c t^{2}+d t^{3}$, find the dimensions of a, b, c and d.

D Watch Video Solution
8. write the limitations of dimesional analysis .
9. An expression of physical quantity is written
as
($X=\sqrt{\frac{t}{m}}$ where T is the applied force and
m is the mass per unit length. Find the dimensional representation of X and identify
the physical quantity. $\left(X=\sqrt{\frac{T}{m}}\right.$.

- Watch Video Solution

10. In van der Waals' equation $\left(P+(a)\left(V^{\wedge} 2\right)^{\prime}(V-\right.$
b) = RT, what are the dimesions of a and b ?

Here, P is pressure, V is volume, T is temperature and R is gas constant.

- Watch Video Solution

11. write the limitations of dimesional analysis .

D Watch Video Solution

12. An expression of physical quantity is written as
($X=\sqrt{\frac{t}{m}}$ where T is the applied force and m is the mass per unit length. Find the dimensional representation of X and identify
the physical quantity. $\left(X=\sqrt{\frac{T}{m}}\right.$.

- Watch Video Solution

13. Establish the relation $T=2 \pi \sqrt{1} / g$ for the
time period of a simple pendulum with the
help of dimensional analysis.

- Watch Video Solution

14. Light year is a unit of

D Watch Video Solution
15. What is the unit for measuring nuclear cross section.
(Watch Video Solution
16. What is the unit for measuring nuclear cross section.

D Watch Video Solution
17. Name two types of mass.

- Watch Video Solution

18. Write the singificant number of following.

1234

- Watch Video Solution

19. Write the singificant number of following.
$2.99 \times 10^{24} \mathrm{~kg}$

- Watch Video Solution

20. Write the singificant number of following.
$.1590 \mathrm{gm} / \mathrm{c}^{3}{ }^{3}$

- Watch Video Solution

21. Write three dimensional quantity.

- Watch Video Solution

22. which is the most accurate clock.

- Watch Video Solution

23. Write the dimension of rate of flow?

D Watch Video Solution

24. can a quantity have dimension, but no unit

?

(Watch Video Solution

25. What is the difference between 5.0 and 5.00
26. Write the dimension of following quantity

Kinetic energy

D Watch Video Solution
27. Write the dimension of following quantity

Planck's constant.

- Watch Video Solution

28. Write the dimension of following quantity

Electric field intensity

D Watch Video Solution
29. Write the dimension of following quantity

Angular velocity.

D Watch Video Solution

30. Is all constant dimensionless? Give support of your answer.

- Watch Video Solution

31. What do you mean by absolute error, relate error, and percentage error?
32. If $x=a+b t+c t^{2}$ where the unit fo x is meter and unit of t is sec. What is the unit of c.

- Watch Video Solution

33. Justify $L+L=L$ and $L-L=L$.

- Watch Video Solution

34. write the limitations of dimesional analysis

- Watch Video Solution

35. Write the dimension of $\frac{1}{4 \pi \epsilon_{0}}$.

- Watch Video Solution

36. Check the following equation
dimionisionaly correct or not.
$S=u t+\frac{1}{2} a t^{2}$
37. Check the following equation
dimionisionaly correct or not.
$S_{n t h}=u+\frac{a}{2}(2 n-1)$

- Watch Video Solution

38. Check the following equation
dimionisionaly correct or not.
$\frac{1}{2} m v^{2}=m g h$

- Watch Video Solution

39. Check the following equation dimionisionaly correct or not.
$n=\frac{1}{2 l}=\sqrt{\frac{T}{m}}$
The symbol has ussual meaning.

D Watch Video Solution

40. If $x=a+b t+c t^{2}$ where the unit fo x is meter and unit of t is sec. What is the unit of c.

D Watch Video Solution

41. Show that the relation $T=2 \pi \sqrt{\frac{l}{g}}$ for simple pendulum dimensionally correct

- Watch Video Solution

42. Let x and a stand for distance.

Is $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\frac{1}{A} \sin ^{-1} \frac{a}{x}$ dimensionally correct.
43. Write the dimesnion of $a \times b$ in the relation $E=\frac{b-x^{2}}{a b}$ where E is the energy and x is the distance.

D Watch Video Solution

44. Write the dimension of $\frac{a}{b}$ from the following relation. $F=a \sqrt{x}+m b t^{2}$

D Watch Video Solution

45. State the number of significant figure in the following.
$.007 m^{2}$

- Watch Video Solution

46. State the number of significant figure in
the following.
$.0006032 m^{2}$

- Watch Video Solution

47. State the number of significant figure in the following.
$6.320 J$

- Watch Video Solution

48. State the number of significant figure in the following.
. 23 gm
49. The rotational K.E. is given by $\frac{1}{2} I \omega^{2}$. Use this equation to obtain dimension of I .

- Watch Video Solution

50. Name the physical quantity which has the same meaning as momentum.

- Watch Video Solution

51. In van der Waals' equation $\left(P+(a)\left(V^{\wedge} 2\right)^{\prime}(V-\right.$
b) = RT, what are the dimesions of a and b ?

Here, P is pressure, V is volume, T is temperature and R is gas constant.

- Watch Video Solution

