©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BINA LIBRARY PHYSICS

(ASSAMESE ENGLISH)

KINEMATICS - 1

Example

1. The position of an object moving along x axis is given by $x=a+b t^{2}$, where $a=10 m, b=3$
$m s^{-2}$, and ' t ' is measured in second. What is the average velocity between $t=2 s$ and $t=4 s$?

D Watch Video Solution

2. The motion of a particle along x-axis is given
by equation $x=9+5 t^{2}$, where x is the distance
in cm and t is time in second. Find
the displacement after 3 seconds.
3. The motion of a particle along x-axis is given by equation $x=9+5 t^{2}$, where x is the distance in cm and t is time in second. Find average velocity during the interval from 3 to 5 seconds

D Watch Video Solution

4. The motion of a particle along x-axis is given by equation $x=9+5 t^{2}$, where x is the distance
in cm and t is time in second. Find instantaneous velocity after 3 seconds

D Watch Video Solution

5. The distance x of a particle moving in one dimension, under the action of constant force
is related to time t by equation. $\mathrm{t}=\sqrt{x}+3$ where x in metre and t in second. Find the displacement of the particle when its velicity is zero.
6. A car covers first half of the distance between two places at a speed of $40 \mathrm{~km} / \mathrm{hr}$ and the second half at $60 \mathrm{~km} / \mathrm{hr}$. What is the average speed of the car?

D Watch Video Solution

7. The displacement (in meter) of a particle moving along x-axis is given by $x=18 t+5 t^{2}$.

Calculate instantaneous velocity at $\mathrm{t}=2 \mathrm{~s}$
8. The displacement (in meter) of a particle moving along x-axis is given by $x=18 t+5 t^{2}$.

Calculate average velocity between $t=2 s$ and t $=3 \mathrm{~s}$.

D Watch Video Solution

9. The displacement (in meter) of a particle moving along x -axis is given by $\mathrm{x}=18 \mathrm{t}+5 t^{2}$.

Calculate instantaneous acceleration.

- Watch Video Solution

10. A body starts from rest and has a velocity of $15 \mathrm{~ms}^{-1}$ in 6 seconds. If the accelerations is uniform, how far will it move in next 6 seconds ?

- Watch Video Solution

11. A bullet fired into a block of wood loses half of its velocity after penetrating 3 cm . If the
retardation is uniform how much further will it penetrate?

D Watch Video Solution

12. The driver of a car moving with a velocity

60 km per hours observes ahead a child at a
distance of 101m. He immediately applies brake
and the car stops just 1 m before the child.

Find the time required to stop the car.

- Watch Video Solution

13. A body moving with uniform acceleration
goes 65 m in 5th second and 105 m in the 9th
second. How far will it go in the 20th second?

- Watch Video Solution

14. A mail bag is dropped into a post office,
from an areoplane flying horizontally with a velocity $72 \mathrm{hm} / \mathrm{hr}$ at height of 490 m from the ground. How far must the plane be from the post office so that it may directly fall into the post office?
15. A stone falls from the top of a building and travels 53.9 m in the last second before it reaches the ground. Find the height of the building.

- Watch Video Solution

16. A ball is dropped from the top of a tower.

One second later another ball is thrown
downwards with a velocity of $15 \mathrm{~ms}^{-1}$. When
and how far below the top will the second stone overtake the first?

D Watch Video Solution

17. A ball is thrown up with a velocity $4.9 m s^{-1}$.

Find the maximum height reached by the ball.
How long does it spend in air?
18. A stone is dropped from the top of a tower

100m high. At the same time another stone is
thrown vertically upwards from the ground
with a velocity of $50 \mathrm{~ms}^{-1}$. Find when and where the stones will meet.

D Watch Video Solution
19. A ball thrown vertically upwards takes 4 seconds to return to the ground. Calculate the maximum height reached.
20. A ball thrown vertically upwards takes 4 seconds to return to the ground. Calculate the velocity with which it is thrown.

- Watch Video Solution

21. A ball is thrown vertically upwards with a velocity $4.9 \mathrm{~m} / \mathrm{s}$ from the floor of a bridge over water. The ball strikes water after 2 seconds.

Calculate the height of the bridge.

- Watch Video Solution

22. A police van moving on a highway with speed $30 \mathrm{kmh}^{-1}$ fires a bullet at a theif's car speeding away in the same direction with a spped of $190 \mathrm{kmh}^{-1}$. If the muzzle spped of the bullet is $360 \mathrm{kmh}^{-1}$, with what speed does the bullet hit the thief's car?
23. Two cars are moving in the same direction
with the same speed ($=30 \mathrm{~km} / \mathrm{hr}$). They are
separated by a distance of 5 km . What is the speed of a car moving in the opposite direction if it met these cars at an interval of 4 minutes?

D Watch Video Solution
24. On a two-lane road, car A travelling with a speed of $15 \mathrm{~ms}^{-1}$ is approached by two cars B
and C moving with speed $20 \mathrm{~ms}^{-1}$ each in opposite directions. At an instant when the distance $A B$ is equal to $A C$, both being 700 m , B decides to overtake A before C does. Find the minimum acceleration required by B to avoid accident.

D Watch Video Solution

Exercise

1. Distinguish between distance and

 displacement
D Watch Video Solution

2. Distinguish between speed and velocity.

D Watch Video Solution

3. What is meant by the statement 'motion and rest are relative' ?

- Watch Video Solution

4. Define the terms instantaneous velocity and instantaneous acceleration.

- Watch Video Solution

5. Define relative velocity. When is its value zero ?

6. Can the speed of a body negative ?

D Watch Video Solution

7. Can the velocity of a body negative or zero?

D Watch Video Solution

8. What does the slope of velocity-time graph indicate?

9. What does the area under velocity - time

 graph indicate?- Watch Video Solution

10. Can a particle has zero velocity while its acceleration is uniform?
(Watch Video Solution
11. What does the speedometer of a car indicate?

D Watch Video Solution
12. Distinguish between average velocity and instantaneous velocity.
13. What is the uniform motion ? How would you represent it graphically?

D Watch Video Solution
14. What does the slope of velocity-time graph indicate?

D Watch Video Solution
15. Distinguish between average velocity and average speed.

Is it possible that the average velocity of a body is zero, but its average speed is nonzero?

- Watch Video Solution

16. A particle moves along a straight line according to $x={ }^{\prime} P t^{\wedge} 2+2 q t+r$ where x is the distance travelled in time t and p, q and r are
constants. Find an expression for the acceleration of the particle.

- Watch Video Solution

17. The displacement equation of a particle moving along a straight line with uniform acceleration is
$\mathrm{x}=v_{0} t+\frac{1}{2} a t^{2}$.
Find the distance covered by the particle in
the last second of its motion.

D Watch Video Solution
18. Derive -
$\mathrm{v}=v_{0}+a t$

(Watch Video Solution

19. Derive -
$\mathrm{x}=v_{0} t+\frac{1}{2} a t^{2}$
20. Derive -
$v^{2}=v_{0}^{2}+2 a x$

D Watch Video Solution
21. Obtain velocity - time relation and velocity position relation for a uniformly accelerated motion.

D Watch Video Solution
22. Draw the velocity - time graph of a body
having initial velocity, when the velocity is uniform.

D Watch Video Solution

23. Draw the velocity - time graph of a body
having initial velocity, when the velocity is non

- uniform.

D Watch Video Solution
24. Show that the average velocity of a particle in uniform motion is equal to the slope of the corresponding time-displacement curve.

- Watch Video Solution

25. An athlete completes one round of a circular track of radius R in 30 seconds. What
will be the displacement at the end of $2 \min 15$ second?
26. Can a body have a constant velocity and still have a varying speed?

D Watch Video Solution

27. Is it possible that the velocity of a particle
is zero though it has still an acceleration?

D Watch Video Solution
28. A body slides down a smooth inclined plane when released from the top , while another body falls freely from the same point.

Which one will strike the ground earlier?

D Watch Video Solution

29. The displacement of particle along a
straight line at time t is given by $x=$ $2 \alpha+\beta t+\gamma t^{2}$.

Find its acceleration.
30. A particle located at $x=0$ at time $t=0$ starts moving along positive x-direction with velocity v that varies as $v=a \sqrt{x}$. Show that $x \propto t^{2}$.

D Watch Video Solution

31. A body moving with a uniform acceleration describes 12 m in third second of its motion
and 20 m in the fifth second. Find the velocity after 10 seconds.

D Watch Video Solution

32. A bullet fired into a fixed target losses half of its velocity after penetrating 5 cm . How much further will it penetrate before coming to rest assuming that it faces constant resistance?
33. A body moving with uniform acceleration
attains velocity $25 \mathrm{~m} / \mathrm{s}$ after 5 seconds and 34 m / s after 8 second. Calculate the distance it covers in the 10th second.

- Watch Video Solution

34. A car moving with a speed of $126 \mathrm{kmh}^{-1}$ is brought to stop within a distance of 200 m . What is its retardation and how long it takes for the car to stop ?
35. A body covers 4 m in 3 rd second and 12 m in 5th second. How far will it travel in the next three seconds (assume uniform acceleration) ?

D Watch Video Solution

36. A stone is dropped from a rising balloon at
a height of 75 m above the ground. It reaches
the ground in 6 seconds. Calculate the velocity
of the balloon just at the moment when the stone is dropped.

D Watch Video Solution

37. A balloon is rising with a speed of $5 m s^{-1}$.

When it is at a height of 98 m a packet is
dropped from it. What is the velocity of the packet when it strikes the ground?

- Watch Video Solution

38. From the top of a tower 100 m in height, a ball is dropped and at the same time another ball is projected vertically upwards from the ground with a velocity of $25 \mathrm{~ms}^{-1}$. Find when and where two balls will meet.

- Watch Video Solution

39. The displacement of a particle (in meter) moving along x axis is given by $\mathrm{x}=18+5 t^{2}$.

Calculate the instantaneous velocity at $t=2 S$ and instantaneous acceleration.

D Watch Video Solution

40. A jet aeroplane travelling at the speed of $500 \mathrm{~km} / \mathrm{h}$ ejects the burnt gases at the speed of $1200 \mathrm{~km} / \mathrm{h}$ relative to the jet aeroplane. Find the speed of the burnt gases w.r.t. a stationary observer on earth.
41. A police van moving on a highway with speed $30 \mathrm{kmh}^{-1}$ fires a bullet at a theif's car speeding away in the same direction with a spped of $192 \mathrm{kmh}^{-1}$. If the muzzle spped of the bullet is $150 \mathrm{~ms}^{-1}$, at what speed does the bullet hit the thief's car?

- Watch Video Solution

42. A man throws balls with the same speed
vertically upwards one after another at an interval of 2 seconds. What should be the
speed so that more than two balls are in the sky at any time? $\left(g=9.8 m s^{-2}\right)$
A. more than $19.6 \mathrm{~ms}^{-1}$
B. at least $9.8 m s^{-1}$
C. any speed less than $19.6 m s^{-1}$
D. only speed $19.6 \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

43. Speeds of two identical cars are v and $4 v$ at
a specific instant. The ratio of respective distances in which the two cars are stopped from that instant is
A. 1:1
B. 1:4
C. 1:8
D. 1:16

Answer: D
44. The speed of a boat is $5 \mathrm{~km} / \mathrm{h}$ in still-water.

It crosses a river of width 1 km along the shortest path in 20 min . The velocity of river water in km / h is
A. 5
B. 1
C. 3
D. 4

Answer: D

D Watch Video Solution

45. Thief's car is moving with a speed of $10 \frac{\mathrm{~m}}{\mathrm{~s}}$.

A police van chasing the car with a speed of 5
$m s^{-1}$ fires a bullet at the thief's car with muzzle velocity $72 \mathrm{~km} / \mathrm{h}$. The speed with which the bullet hits the car is
A. $10 m s^{-1}$
B. $20 m s^{-1}$

C. $15 m s^{-1}$
 D. $25 m s^{-1}$

Answer: C

- Watch Video Solution

46. A particle is moving with a velocity $5 \mathrm{~m} / \mathrm{s}$ towards east and its velocity changes to $5 \mathrm{~m} / \mathrm{s}$ north in 10 second. Its acceleration is
A. $\sqrt{2} N W$

> B. $\frac{1}{\sqrt{2}} N W$
> C. $\frac{1}{\sqrt{2}} N E$
> D. $\sqrt{2} N E$

Answer: B

- Watch Video Solution

47. A body falling from a height travels 40 m in
the last $2 s$ of its fall to ground. The height in meter is
A. 60
B. 45
C. 80
D. 50

Answer: B

D Watch Video Solution
48. A stone dropped into a lake form a tower

500 m high. The sound of splash is heard after
A. 10s
B. 11.5 s
C. 14s
D. 21 s

Answer: B

D Watch Video Solution
49. The velocity of a body depends on time according to $v=20+0.1 t^{2}$. The body undergoes
A. uniform acceleration
B. uniform retardation
C. non-uniform acceleration
D. zero acceleration

Answer: C

D Watch Video Solution

50. If $X=$ at $+b t^{2}$, where X is distance travelled by a body in km while t is time in second. The unit of b is
A. $k m s^{-1}$
B. kms
C. $k m s^{-2}$
D. $k m s^{2}$

Answer: C

D Watch Video Solution

51. The equation $\sqrt{x}=\mathrm{t}+9$ gives the variation of displacement with time. Which of the following is correct?
A. velocity is proportional to time
B. velocity is inversely proportional to time
C. acceleration depends on time
D. acceleration is constant

Answer: D

D Watch Video Solution

52. A body starts from rest. The ratio of the distances travelled by it during the 4th and 3 rd second is
A. $7 / 5$
B. 5/7
C. 3/4
D. $4 / 5$

Answer: A

D Watch Video Solution

53. A body is released from a height and falls freely. Another body is released exactly 1 sec
later from the same height. The seperation
between the two bodies, 2 sec after the release of the second body is
A. 4.9 m
B. 9.8 m
C. 19.6 m
D. 24.5 m

Answer: D
(Watch Video Solution
54. A body dropped from a height h with an
initial speed zero reaches the ground with a velocity $3 \mathrm{~km} / \mathrm{h}$. Another identical body was dropped from the same height with an initial speed of $4 \mathrm{~km} / \mathrm{h}$. It will reach the ground with
a velocity`
A. $3 \mathrm{~km} / \mathrm{h}$
B. $4 \mathrm{~km} / \mathrm{h}$
C. $5 \mathrm{~km} / \mathrm{h}$
D. $12 \mathrm{~km} / \mathrm{h}$

Answer: C

D Watch Video Solution

55. Water drops fall at regular intervals from a tap, which is 5 m above the ground. The third drop is leaving the tap at the instant the first drop touches the ground. How far above the ground is the second drop at that instant?
A. 2.5 m
B. 3.75 m

C. 4 m

D. 1.25 m

Answer: B

D Watch Video Solution

56. A train 150 m in length is moving north at a speed of $10 \mathrm{~m} / \mathrm{s}$. A parrot flies at a speed of $5 \mathrm{~m} / \mathrm{s}$ towards south parallel to the railway track. The time taken by the parrot to cross the train is
A. 12 s
B. 8 s
C. 10s
D. 15 s

Answer: C

D Watch Video Solution

57. For a body moving along a straight line,
the average velocity is equal to its
instantaneous velocity. The motion of the body is
A. uniform
B. may be uniform or non-uniform
C. uniformly accelerated
D. non-uniformly accelerated

Answer: A
(Watch Video Solution
58. If the time-displacement graph of a particle is parallel to time-axis, the velocity of the particle is
A. variable
B. infinity
C. zero
D. numerically equal to its acceleration

Answer: C

D Watch Video Solution
59. When a particle is moving with uniform velocity which of the following changes
A. speed
B. velocity
C. position vector
D. acceleration

Answer: C
(Watch Video Solution
60. The distance covered by a body moving
along a straight line is proportional to the square of time. The acceleration of the body is
A. increasing
B. decreasing
C. constant
D. zero

Answer: C

61. If a body starts from rest and travels 1.2 m in 8th second, then acceleration is
A. $0.08 m s^{-2}$
B. $0.16 m s^{-2}$
C. $0.20 \mathrm{~ms}^{-2}$
D. $0.225 \mathrm{~ms}^{-2}$

Answer: C

D Watch Video Solution
62. The equation $\sqrt{x}=\mathrm{t}+9$ gives the variation of displacement with time. Which of the following is correct?
A. velocity is proportional to time
B. velocity is inversely proportional to time
C. acceleration depends on time
D. acceleration is constant

Answer: D

D Watch Video Solution
63. If $X=$ at $+b t^{2}$, where X is distance travelled by a body in km while t is time in second. The unit of b is
A. $k m s^{-1}$
B. $k m s^{-2}$
C. kms
D. $k m s^{2}$

Answer: B

D Watch Video Solution
64. A body is released from the top of a tower of height h meters. It takes t seconds to reach
the ground. Where is the body at time $t / 2$ seconds?
A. at $\mathrm{h} / 2$ meters from the ground
B. at h/4 meters from the ground
C. at 3h/4 meters from the ground
D. depends upon its mass and volume

Answer: C

65. The distances travelled by a body falling freely from rest in the 1st, 2nd and 3rd seconds are in the ratio.
A. 1:2:3
B. 1:3:5
C. 1:5:9
D. none of the above

Answer: C
66. An object is projected upward with a velocity of $100 \mathrm{~ms}^{-1}$. It will strike the ground in approximately
A. 10 s
B. 20s
C. 15s
D. 5 s

- Watch Video Solution

67. A particle is moving eastward with a velocity of $5 m s^{-1}$ in 10 s , the velocity of the particle changes $5 m s^{-1}$ northward. The average acceleration is
A. $\frac{1}{\sqrt{2}} m s^{-2}$ towards north-west
B. $\frac{1}{\sqrt{2}} m s^{-2}$ towards north-east
C. $\frac{1}{2} m s^{-2}$ towards north-west
D. $2 m s^{-2}$ towards north-east

Answer: A
(Watch Video Solution

