©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BINA LIBRARY PHYSICS (ASSAMESE ENGLISH)

KINEMATICS-II

Example

1. A cyclist is with a speed of $8 \mathrm{~m} / \mathrm{s}$. As he approaches a circular trun on road of radius

80 m , he applies break and the speed is reduced at the rate of $0.5 \mathrm{~m} / \mathrm{s}$ every second.

What is the magnitude and direction of net acceleration of the cyclist on the turn?

- Watch Video Solution

Exercise

1. What is the basic different between a vector and a scalar?
2. What is a null vector? Define a unit vector.

D Watch Video Solution

3. State triangle law of addition of vectors.
(Watch Video Solution
4. What is a projectile?

5. What do you mean by time of flight in

 projectile?
- Watch Video Solution

6. What is the velocity of a projectile at the highest point?
7. What do you mean by horizontal range of a projectile?

D Watch Video Solution
8. In unform circular motion which physical quantities remain constant?
A. velocity
B. acceleation
C. momentum

D. speed

Answer:

D Watch Video Solution

9. What is the direction of acceleration of a
body moving in a curved path with a constant speed?
10. Can a paricle accelerate if its speed is constant?

D Watch Video Solution
11. Can a paricle accelerate when its velocity is constant?
(Watch Video Solution
12. Is it possible for a body to move in a curved path without being accelerated?

D Watch Video Solution

13. Show that the trajectory of projectile is parabolic.
14. Find an expression for maximum verital height of an inclined projectile.

D Watch Video Solution

15. Show that the linear speed of a paricle rotaling alon a circular path is r times the angular speed of the particle.

D Watch Video Solution

16. Why is a body moving in uniform circular motion accelerated?

- Watch Video Solution

17. What are radial and tangential acceleration
of a body moving in a uniform circular motion?

- Watch Video Solution

18. Obtain an equation of a body moving in two dimensions.

D Watch Video Solution
19. Find an expression for the horizontal range of an incliined projectile.

D Watch Video Solution
20. A projectile is thrown upward with a velocity of V , in a direction making an angle Θ with the horizental. Derive the equation of its trajectory.

D Watch Video Solution

21. Find the range of projectile. At what elevation angle the range will be maximum?

D Watch Video Solution

22. Show that the path of the body projected in a horizontal direction from a height is a parabola.

D Watch Video Solution

23. Find the path of projectile, time of flight,
horizontal range and maximum height, when a
projectile is projectile is priojected with
velocity v making an angle Θ with the vertical direction.
24. What is centripetal acceleration? Find its magnitude and direction in case of circular uniform motion.

D Watch Video Solution

25. Is it possiable that the velocity of a particle changes in magnitude and direction though
the accceleration acting on it is constant in magnitude and direction?

Watch Video Solution

26. Can there be motion in two dimensions with an acceleration in only one dimension?

- Watch Video Solution

27. Is the rocket in flight an example of a projectile?
28. At what point of the projectile path the speed become maximum and minimum?

D Watch Video Solution

29. Why does the direction of a projectile become horizontal at the highest point of its trajectory?

D Watch Video Solution

30. Explain why a body dropped from rest and another projected horizontally from the same height strike the ground at the same time.

- Watch Video Solution

31. Can an object be accelerated without speeding up and slowing down?

- Watch Video Solution

32. Can a body have a constant speed and still have a varying velocity?

- Watch Video Solution

33. Can a body have a constant speed and still
have a varying velocity?

D Watch Video Solution
34. What is the angle between velocity and acceleration vector in a circular motion?

D Watch Video Solution

35. Can momentum of a system be changed without changing its K.E.?
36. Explain why a particle moving with a constant speed along a circular path has radial acceleration.

D Watch Video Solution

37. Can a body with uniform acceleration always move in straight line?

D Watch Video Solution
38. A body projected with a velocity $25 \mathrm{~m} / \mathrm{s}$ just clears a wall 5 m high after 2 seconds. Find the angle of projection and maximum height reached by the body.

D Watch Video Solution

39. An aeroplane is flying in a hirizontal direction with a velocity of $360 k m h_{-1}$ at a height of 490 m . How far from a given target
should it release a bomb so as to hit the target?

D Watch Video Solution

40. A paricle is projected with a velocity of $40 m s_{-1}$. After two seconds, it crosses a vertical pole of height 20.4 m . Calculate the angle of projection.
41. Find the angle of projection so that a body when projected has the horizontal range equal to the maximum height attained.

- Watch Video Solution

42. An artifucial satellite is orbiting around the earth with a speed of $4 k m s_{-1}$ at a distance of $10^{4} \mathrm{~km}$ from the earth. Calculate the centripetal acceleration.
43. A bomber piane is moving horizontally with
a speed of $500 \mathrm{~ms}^{-1}$ and a bomb relased from
it strikes the ground in 10s. The angle it strikes
the ground is
A. $\tan ^{-1} 5$
B. $\tan ^{-1} 1$
C. $\tan ^{-1}\left(\frac{1}{5}\right)$
D. $\sin ^{-1}\left(\frac{1}{5}\right)$

Answer:

- Watch Video Solution

44. The height and horizontal distance of a projectile are $\mathrm{y}=8 t-5 t^{2} \mathrm{~m}$ and $\mathrm{x}=6 \mathrm{t} \mathrm{m}$. its projection velocity is
A. $8 \mathrm{~m} / \mathrm{s}$
B. $6 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. not obtainable
45. A paricle moves in a plane with a constant acceleration in a direction different from initial velocity. The path of the particle is
A. straight line
B. arc of a circle
C. parabola
D. ellipse
46. When a body moves with constant speed along a circle
A. Its velocity remains constant
B. no force acts an it
C. no work is done on it
D. no acceleration is produced on it

Answer:
47. Which quantity is fixed on object on object which moves in a horizontal circle at constant speed
A. velocity
B. acceleration
C. kinetic energy
D. force

Watch Video Solution

48. A partiale of mass m is moving in a circular path of radius r such that its centripetal acceleration is varying with time t as ${ }_{\mathrm{a}}^{-} \mathrm{c}=$ $k^{\wedge} 2 r t^{\wedge} 2$, where k is constant. The power delivered to the particle by the forces acting on it is
A. $2 \pi m k^{2} r^{2} t$
B. $m k^{\wedge} 2 r^{\wedge} 2 t$
C. $\left(m k^{\wedge} 4 r^{\wedge} 2 t^{\wedge} 5\right) / 3$

D. zero

Answer:

D Watch Video Solution

49. Which of the following is a vector?
A. work
B. mass
C. energy
D. momentum

Answer:

D Watch Video Solution

50. Identify the vector quantity among the following:
A. heat
B. energy
C. angular momentum
D. distance

Answer:

- Watch Video Solution

51. Which of the following is not a vector quantity?
A. electric field
B. velocity
C. angular momenturm
D. electrostatic potentical

Answer:

- Watch Video Solution

52. Which of the following quantities is a scalar?
A. speed
B. velocity
C. torque
D. displacement

Answer:

D Watch Video Solution

53. Identify the concept that represents a vector quantity.
A. electrostatic potential
B. gravitational potential
C. electric current
D. current density

Answer:

D Watch Video Solution

54. During projectile motion the quantities
that remain unchanged are
A. force and vertical velocity
B. acceleration and horizontal velocity
C. kinetic energy and acceleration
D. acceleration and momentum

Answer:

D Watch Video Solution

55. The position of a particle moving in $x y$ plane at time t is given by $\mathrm{x}=\left(3 \mathrm{t}^{\wedge} 2-6\right)$ and $\mathrm{y}=$ $\left(t^{\wedge} 2-2 t\right)$. Which one is correct statement for its motion?
A. velocity is zero at $\mathrm{t}=0$
B. velocity is zero at $\mathrm{t}=1 \mathrm{~s}$.
C. acceleration is zeroat $\mathrm{t}=0$
D. velocity and acceleration are never zero

Answer:

- Watch Video Solution

