đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BINA LIBRARY PHYSICS

(ASSAMESE ENGLISH)

KINETIC THEORY OF GASES

Example

1. Find rms speed of oxygen molecule at
temperature $27^{\wedge} 0 \mathrm{C}$
2. The rms speed of nitrogen molecule is 490 m / s at 273 K .What would be the speed of hydrogen molecule at the same temperature?

- Watch Video Solution

3. At what temperature will the rms velocity of molecules of a gas be double of that at $0^{0} \mathrm{C}$?

Exercise

1. What is an ideal gas?
(Watch Video Solution
2. State Boyle's Law.

- Watch Video Solution

3. What is meant by rms velocity of a gas molecule?

D Watch Video Solution
4. At what temperature would the kinetic energy of a gas molecule be zero?

- Watch Video Solution

5. State the law of equipartition of energy.

- Watch Video Solution

6. What is meant by degree of freedom?

D Watch Video Solution
7. State the relation between rms speed of the molecules of a gas and its temperature.

- Watch Video Solution

8. Define the term mean path.

- Watch Video Solution

9. Write down the formula for average translational kinetic energy of a gas molecule.

- Watch Video Solution

10. What is the minimum possible temperature
on the basis of Charle's Law.

- Watch Video Solution

11. What is the interpretation of temperature on the basis of kinetic theory of gas?

- Watch Video Solution

12. Explain why molar specific heat at constant pressure is greater than that at constant volume?
13. Establish the relation, $V_{r m s}=\frac{\sqrt{3 K T}}{m}$

D Watch Video Solution

14. State the law of equipartition of energy.

D Watch Video Solution

15. Why does the temperature of a gas rise when it is suddenly compressed?
16. Why does the air pressure in a car tyre increase during driving?

- Watch Video Solution

17. Show how the result of kinetic theory of gas leads to a relation between temperature of a gas and the average translational Kinetic energy of a gas molecule.
18. What is the average kinetic energy per molecule of a monoatomic gas?

D Watch Video Solution

19. State the basic assumption on which the kinetic theory of gases is based.

- Watch Video Solution

20. Why does a gas exert pressure on the wall of its container?What are the two factors on which this pressure depends?

D Watch Video Solution

21. Show that the pressure exerted by unit
volume of a perfect gas is equal to two thirds
of the total kinetic energy of the gas molecules.
22. Prove that the pressure exerted by an ideal
gas given by $P=\frac{1}{3} \rho v^{2}$.

- Watch Video Solution

23. What do you understand by the terms
(i)average velocity and (ii)root mean square
velocity?
24. What is meant by rms velocity of a gas molecule?

- Watch Video Solution

25. Write down an expression for the pressure of a gas in terms of its mass,volume and rms velocity.
(D) Watch Video Solution
26. Show that the rms velocity is proportional to the square root of the absolute temperature.

D Watch Video Solution

27. Starting with the expression for pressure as given by the kinetic theory,obtain Boyle's

Law and why this law is not accurately obeyed by real gases.
28. Deduce the gas laws on the basis of kinetic theory of gases.

D Watch Video Solution

29. Derive the gas equation for a perfect gas
on the basis kinetic theory.

- Watch Video Solution

30. What is Boltzmann's Law of equipartition of energy?Obtain it.

- Watch Video Solution

31. What do you mean by 'Degrees of

Freedom'?How many degrees of freedom are associated with monoatomic,diatomic and triatomic molecules?
32. Two different gases have exactly the same temperature.Does this mean their molecules
have the same rms speed?
(Watch Video Solution
33. Can you explain 'evaporation' on the basis of the kinetic theory?

D Watch Video Solution

34. Cooling is caused by evaporation - Explain.

D Watch Video Solution

35. If the number of molecules of a gas in a container is doubled what will be the affect on pressure and rms speed?
36. What is the total momentum of the molecules of a mole of a helium gas in a container at rest kept at temperature of 400 K?

- Watch Video Solution

37. Absolute zero degree temperature is not the temperature of zero eneregy' - Explain.
38. Distinguish between the internal energy of a body and temperature.

- Watch Video Solution

39. If the temperature of a gas is increased
four times its original value, what will be the
change in rms velocity of its molecules?

D Watch Video Solution
40. The pressure of a gas is halved at constant temperature. What will be the change in its volume?

D Watch Video Solution

41. On expanding at constant temperature the pressure of a gas decreases.Explain on kinetic theory.
42. On reducing the volume of a gas at constant temperature the pressure of the gas increases.Explain on kinetic theory.

- Watch Video Solution

43. Does the pressure of a gas,on
heating,increases?

- Watch Video Solution

44. Find the r.m.s velocity of nitrogen molecules at $15^{\circ} \mathrm{C}$ and 76 cm of Hg .

D View Text Solution
45. At what temperature will be r.m.s velocity of hydrogen be double of its value at NTP?

- Watch Video Solution

46. Calculate the mean $K E$ of one mole of helium gas at 300 K .

D Watch Video Solution
47. Calculate the total translational KE of 3 molecules of an ideal gas at $227^{\circ} \mathrm{C}$.

- Watch Video Solution

48. At what temperature the rms velocity of oxygen will become half that of Hydrogen NTP?

D Watch Video Solution

49. If the root mean squre velocity of molecules of hydrogen at NTP is $1840 \mathrm{~ms}^{-1}$
.Calculate the root mean square velocity of oxygen molecules at NTP.
50. Calculate the rms velocity of oxygen molecules at NTP,the molecular weight of oxygen at being 32 .

- Watch Video Solution

51. The temperature of an ideal gas is increased from 120 K to $480 \mathrm{~K} . \mathrm{If}$ at 120 K the rms speed is $\mathrm{v}, \mathrm{at} 480 \mathrm{~K}$ it becomes
A. 4 v
B. 2 v
C. $\frac{v}{2}$
D. $\frac{v}{4}$

Answer: B

D Watch Video Solution

52. At what temperature is rms speed of air molecules double of that at NTP?
A. $719^{0} \mathrm{C}$
B. $819^{0} \mathrm{C}$
C. $909^{\circ} \mathrm{C}$
D. none of these

Answer: B

D Watch Video Solution

53. The rms speed of molecules of a gas in a vessel is $400 \mathrm{~ms}^{-1}$.If half of the gas leaks out at constant temperature. The rms speed of the remaining gas molecules will be
A. $800 m s^{-1}$
B. $400 \sqrt{2} \mathrm{~m} / \mathrm{s}$
C. $400 \mathrm{~m} / \mathrm{s}$
D. $200 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

54. At what temperature r.m.s velocity of H_{2} molecules is equal to that of oxygen molecule at $47^{0} \mathrm{C}$?
A. 80 K
B. (-)73k
C. 3K
D. 20 K

Answer: D

D Watch Video Solution

55. At 27^{0} C, The KE of an ideal gas is E.if temperature is increased to 327° C,K.E is
A. $\frac{E}{2}$
B. $\frac{E}{\sqrt{2}}$
C. $\sqrt{2} E$
D. 2 E

Answer: D

D Watch Video Solution

56. He is filled in a closed vessel.When it is heated from 300 K to 600 K . The average K.E will be
A. Half
B. Unchanged
C. Twice
D. sqrt(2) time

Answer: C

D Watch Video Solution

57. A vessel contains 1 mole of O_{2} gas at temperature T and pressure P.An identical
vessel containing 1 mole of He at temperature

2T has pressure
A. $\frac{P}{8}$
B. P
C. 2 P
D. 8 P

Answer: C
(Watch Video Solution
58. The average translational K.E of O_{2}
molecule at a particular temperature is 0.048
eV.The translational K.E of N_{2} molecules in eV at the same temperature is
A. 0.0015
B. 0.003
C. 0.048
D. 0.768

Answer: C

59. In the equation $P V=R T, V$ stands for the volume of
A. Any amount of gas
B. One gram of the gas
C. One gram molecule of gas
D. One litre of gas

Answer: C
60. The relation $P V=R T$ can describe the behaviour of a real gas at
A. high pressure and low temperature
B. low pressure and low temperature
C. low pressure and high temperature
D. high pressure and high temperature

Answer: C

- Watch Video Solution

61. Avogadro number is the number of molecules in
A. one litre of a gas at NTP
B. one mole of a gas
C. one gram of a gas
D. one kilogram of a gas

Answer: B

- Watch Video Solution

62. Internal energy of a gram molecule of ideal gas depends on
A. pressure alone
B. volume alone
C. temperature
D. both temperature and pressure

Answer: C

D Watch Video Solution
63. The mean kinetic energy of a perfect gas
molecule at temperature TK is
A. $\frac{1}{2} R T$
B. RT
C. $\frac{3}{2} \mathrm{KT}$
D. 2 KT

Answer: C
(Watch Video Solution
64. Relation between prepssure P and average kinetic energy E per unit volume of a gas is

$$
\begin{aligned}
& \text { A. } P=\left(\frac{2}{3}\right) E \\
& \text { В. } P=\frac{E}{3} \\
& \text { С. } P=\left(\frac{3}{2}\right) E \\
& \text { D. } P=3 E
\end{aligned}
$$

Answer: A

D Watch Video Solution
65. the temperature of a gas is raised from 27^{0}

C to 927^{0} C.The r.m.s molecular speed is
A. remains unchanged
B. gets halved
C. gets doubled
D. $\sqrt{\frac{927}{27}}$ times the earlier value

Answer: C

D Watch Video Solution

66. The rms velocity of a gas molecule of mass m at a given temperature is proportional to
A. m^{0}
B. m
C. \sqrt{m}
D. $m^{-\left(\frac{1}{2}\right)}$

Answer: D

D Watch Video Solution
67. At room temperature the rms speed of molecule of a certain diatomic gas is found to be $1930 \mathrm{~ms}^{-1}$.The gas is
A. H_{2}
B. F_{2}
C. O_{2}
D. $C l_{2}$

Answer: A

D Watch Video Solution
68. At 0 k , which of the following properties of
a gas is zero?
A. kinetic energy
B. potential enrgy
C. vibrational energy

D. density

Answer: A
(Watch Video Solution
69. The temperature of an ideal gas is increased from 120 K to 480 K .If at 120 K the rms speed is $v, a t 480 \mathrm{~K}$ it becomes
A. 4 v
B. 2v
C. $\frac{v}{2}$
D. $\frac{v}{4}$

Answer: B

70. Two identical cylinders contain helium at

2.5 atm and argon at 1 atm respectively.lf both
the gases are filled in one of the cylinders,the pressure would be
A. 3.5 atm
B. 1.75 atm
C. 1.5 atm
D. 1 atm

Answer: A
71. At a given temperature,the ratio of rms velocity of hydrogen to rms velocity of oxygen is
A. 4
B. $\frac{1}{4}$
C. 16
D. 8

Answer: A

D Watch Video Solution
72. The equation of state corresponding to 8 g of O_{2} is
A. $P V=R T$
B. $P V=8 R T$
C. $R V=\frac{R T}{2}$
D. $P V=\frac{R T}{4}$

Answer: D

\square

