# ©゙" doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - BINA LIBRARY PHYSICS

 (ASSAMESE ENGLISH)
## PROPERTIES OF SOLID

Example

1. What is elasticity?

D Watch Video Solution

## 2. what is stress?

D Watch Video Solution

## 3. What is longitudinal stress?

## - Watch Video Solution

4. what is normal stress?
5. what is hydrualic stress?

D Watch Video Solution
6. what is shearing strain ?
( Watch Video Solution
7. Discuss about stress-strain curve .

## 8. What is rigidity modulus ?

D Watch Video Solution
9. What Is the potential energy of a stretched wire ?

## - Watch Video Solution

10. What is bulk modulus ?

## - Watch Video Solution

11. What is breaking point ?

## D Watch Video Solution

Exercise

1. What is inter - atomic force?

D Watch Video Solution

## 2. what is inter - molecular force?

## - Watch Video Solution

3. what is the basic difference between the crystaline and amorphous materials?

## ( Watch Video Solution

4. what are ductile and brittle substances ?

## 5. what is elastomer?

## D Watch Video Solution

## 6. what is stress ?

## D Watch Video Solution

7. what is meant by elastic fatigue ?

## 8. Define yield point and breaking stress ?

## D Watch Video Solution

9. what is poisson's ratio?

## D Watch Video Solution

10. What is the unit of Young's modulus?
11. What is the SI unit of stress ?

## D Watch Video Solution

12. What is Hooke's law?

## D Watch Video Solution

13. what d you mean by comoressibility factor
?

## - Watch Video Solution

14. what is SI unit of compressibility ?

## - Watch Video Solution

15. Name the factors that decide the state of matter .
( Watch Video Solution
16. State the behaviour of a wire under a varying load.

D Watch Video Solution
17. What Is the potential energy of a stretched wire?

D Watch Video Solution
18. Discuss the important applications of elasticity.

D Watch Video Solution
19. Define the terms stress and strain .

## - Watch Video Solution

20. 'steel is more elastic than rubber" - explain

## - Watch Video Solution

21. Explain the three states of matter in terms of inter - molecule forces. Explain the elastic property on the basis of inter - molecule forces.

- Watch Video Solution

22. Define the terms stress and strain .
23. State hooke's law and define the various moduliii of elasticity.

## - Watch Video Solution

24. Define young's modulus and describe a method of measuring its value .

- Watch Video Solution

25. The work done per unit volume in stretching a wire is equal to

## D Watch Video Solution

26. What is inter - atomic force ?

## D Watch Video Solution

27. If the inter - molicule potential energy is
minimum at separation RO what prevents the
molecules ofa a substance from collasping to
the condensed state?

- Watch Video Solution

28. Does the nature of forces differ in solids and liquids?

## D Watch Video Solution

29. Amorphous solids are not true solids .

Explain .
30. In stretching a wire, workmhas to be done
.What happens to this work?

D Watch Video Solution
31. What is more elastic - water or air ?
32. The elasticity of glass is more than that of rubber-Explain .

D Watch Video Solution
33. Springs are generally made of steel but not of copper and alluminium - explain the reason

- Watch Video Solution

34. For what stress will the strain be $1 \%$ of 0.1 ?

$$
\left(\mathrm{Y}=12.4 \cdot 10^{11} \mathrm{Nm}^{-2}\right)
$$

## D Watch Video Solution

35. Two metalic wires of same length an d same cross - section but different Young modulus are pulled by same force. Which wire will be elangated more?
36. Why are the bridges declared unsafe after long use?

## D Watch Video Solution

37. Why do spring balances show wrong reading after long use ?

D Watch Video Solution
38. The breaking force of a wire is $F$. What will be the breaking force for (i) Two parallel wires of same size and (ii)for a single wire of double thickness?

## - Watch Video Solution

39. A steel wire 4 m in length and $2.4 \cdot 10^{-7} m^{2}$ in cross - section is stretched by
a force of 36 N . Calculate the stress and strain
40. The breaking stress of a material is
$9.8 \cdot 10^{6}$ dynes $/ \mathrm{sq.cm}$. find the greatest length of he wire that could hang vertically without breaking (density $=10 \mathrm{~g} / \mathrm{cc}$ )

## D Watch Video Solution

41. A uniform steel wire of density $7.8 \mathrm{~g} / \mathrm{cc}$ weighs 8 g and is 125 cm long. It lengthens by
0.6 mm whwn stretched by a force of $8 \mathrm{~kg}-\mathrm{wt}$.

Calculate young's modulus for steel.

## D Watch Video Solution

42. A rubber cord of radious 2 mm is loaded with a weight of 13 kg . Length of 50 cm is
found to be extended to 51 cm . Calculate the
young's modulus of rubber.

D Watch Video Solution
43. A steel wire of diammeter 2 mm is pulled to
increase its length by $1 \%$ what is the restoring
force developed in it if young's modulus for steel $2 \cdot 10^{12}$ dynes/ $\mathrm{cm}^{\wedge} 2$.

## D Watch Video Solution

44. Calculate the force required to increase by
$1 \%$ length of a rod of cross -sectional area $10^{-3} \mathrm{~m}\left[\mathrm{Y}=1.2^{\star} 10^{\wedge}(12) \mathrm{Nm}^{\wedge} 2\right]$
45. Two wires of same radius and legth are subjected to the same load. One wire is of steel an the other is of copper. If the young modulus of steel is twice that of copper find the ratio of elastic energy stored per unit volume in steel to that of copper .

## D Watch Video Solution

46. A wire length $L$ and cross sectional area $A$
is made of material of Young's modulus $Y$. It is
strectched by an amount $X$. The work done is
A. '(YXA/2L)'
B. ' $\left(Y X^{\wedge} 2 A\right) / L^{\prime}$
C. $\frac{1}{2} \frac{Y X^{2} A}{L}$
D. $\frac{2 Y X^{2} A}{L}$

Answer: C
47. The following four wires are made of same material and same tensiom is applied to them
. Which one will have maximum increase in length ?
A. Length $\mathrm{L}=30 \mathrm{~cm}$ and diameter $\mathrm{D}=1 \mathrm{~mm}$
B. $L=50 \mathrm{~cm}$ and $D=0.5 \mathrm{~mm}$
C. $L=200 \mathrm{~cm}$ and $D=2 \mathrm{~mm}$
D. $L=300 \mathrm{~cm}$ and $D=3 \mathrm{~mm}$

Answer: B
48. If $S$ is the stress and $Y$ is young's modulus of the material of a wire, then the energy stored in the wire per unit volume is
A. $\frac{1}{2} \frac{S^{2}}{Y}$
B. $2 \frac{Y}{S^{2}}$
C. $\frac{S}{2} Y$
D. $2 S^{2} Y$

Answer: A
49. A wire suspended vertically from one end is
stressed by attaching a weight of 200 N to
lower end the weight stretched the wire by 1 mm . the elastic energy stored the wire is
A. 20 J
B. 0.1
C. 0.2J
D. 10 J

Answer: B

## D Watch Video Solution

50. what percentage of length of a wire will increase by applying the stress of

1kg.weight $/ \mathrm{mm}^{\wedge}(2)$ on it $?\left(Y=10^{11} \mathrm{~N} / \mathrm{m}^{\wedge} 2\right), 1$
$\mathrm{Kg} \mathrm{Wt}=9.8 \mathrm{~N}$
A. $0.0078 \%$
B. $0.0088 \%$
C. $0.0098 \%$

## D. $0.0067 \%$

## Answer: C

## D Watch Video Solution

51. $K$ is the force constatnt of a spring. The work done in extending it from l1to 12 is
A. $\mathrm{K}(\mathrm{I} 2-\mathrm{I} 1)$
B. $k\{(11+\mid 2) / 2\}$
C. $k\left(l 2^{2}-l 1^{2}\right)$
D. $\frac{k}{2}\left(l 2^{2}-l 1^{2}\right)$

## Answer: D

## D Watch Video Solution

52. The difference in properties of a substance
in three states of matter depends on
A. difference in molecular shape
B. differernce in inter - molecular forces
C. binding energy atoms

## D. none of these

Answer: B

## D Watch Video Solution

53. Inter - molecular forces are
A. short range
B. long range
C. attractive only
D. repulsive only

## D Watch Video Solution

54. The breaking stress for a wire of unit cross

- sectional is called its
A. yeild points
B. tensile strength
C. elastic fatigue
D. elastic limit


## - Watch Video Solution

55. Bulk modulus is sometimes reffered to as
A. compressibility
B. incompressibility
C. ductility
D. porosity
56. A flat spiral spring is stretched by mens of a small weight. The spring undergoes
A. longitudinal strain and shear strain
B. volume strain
C. shearing strain
D. none of these

Answer: C
57. The following four wires are made of same material and same tensiom is applied to them
. Which one will have maximum increase in length ?
A. Length $\mathrm{L}=0.5 \mathrm{~mm}$ and diameter $\mathrm{D}=$ 0.5 mm
B. $L=1 \mathrm{~mm}$ and $\mathrm{D}=1 \mathrm{~mm}$
C. $L=2 m$ and $D=2 m m$
D. $L=3 \mathrm{~mm}$ and $\mathrm{D}=3 \mathrm{~mm}$

## D Watch Video Solution

58. The work done per unit volume in stretching a wire is equal to
A. stress*strain
B. $1 / 2$ stress * strain
C. stress /strain
D. strain/stress

## D Watch Video Solution

59. What Is the potential energy of a stretched wire?
A. 1/2load * extension
B. load*strain
C. $1 / 2$ stress *strain
D. stress*strain

Answer: A

## D Watch Video Solution

60. A wire length $L$ and cross sectional area $A$
is made of material of Young's modulus $Y$. It is
strectched by an amount $X$. The work done is
A. $Y A X^{\wedge} 2 / 2 L$
B. $Y A X^{\wedge} 2 / L$
C. YAX/2L
D. $2 \mathrm{YAX}^{\wedge} 2 / \mathrm{L}$

Answer: A

## D Watch Video Solution

61. Two springs of spring constant 1500
$\mathrm{Nm}^{\wedge}(-1)$ and $3000 \mathrm{Nm}^{\wedge}(-1)$ respectively are
stretched with the same force that will have potential energy in the ratio
A. $1: 2$
B. 2:1
C. $1: 4$

## D. $4: 1$

## Answer: B

## D Watch Video Solution

62. When a force is applied on a wire of
uniform cross-sectional area $3 \times 10-6 \mathrm{~m} 2$ and
length 4 m , the increase in length is 1 mm .

Energy stored in it will be ( $\mathrm{Y}=2 \times 1011 \mathrm{~N} / \mathrm{m} 2$ )
A. 6250J
B. 0.075 J
C. 0.177J
D. 0.150 J

Answer: B

## D Watch Video Solution

63. An iron bar of length $L$ cross sectional $A$ and young modulus Y is pulled by a force from ends so as to produce an elongation I. Which of the following statements is correct?
A. $l \propto\left(\frac{l}{L}\right)$
B. $l \propto A$
C. $l \propto\left(\frac{1}{A}\right)$
D. $l \propto Y$

Answer: C

## D Watch Video Solution

64. A wire of length $L$ and radius $r$ is fixed at one end and a force $F$ applied to the other end produces an extension $I$. the extension
produced in another wire of same material of
length 2 L and radius 2 r by a force 2 F is
A. I
B. 21
C. $1 / 2$
D. 41

Answer: A
( Watch Video Solution
65. The breaking stress of wire dpends on
A. material of the wire
B. length of he wire
C. radious of the wire

D. shape of cross section

Answer: A

