©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BINA LIBRARY PHYSICS

(ASSAMESE ENGLISH)

THERMAL PROPERTIES OF MATTER

Example

1. The thermal capacity of 8 liters of a liquid A
is equal to the thermal capacity of 10 liters of
liquid B.If the densities of the liquids A and B are $0.5 \mathrm{~g} / \mathrm{cm}^{3}$ and $0.6 \mathrm{~g} / \mathrm{cm}^{3}$ respectively ,find the ration of their specific heats.

D Watch Video Solution

2. The temperature of equal masses of three
liquids A, B and C are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively.The temperature, when A and B are mixed is $16^{\circ} \mathrm{C}$ and when B and C are mixed
,it is $23^{\circ} \mathrm{C}$. What will be temperature when A and C are mixed.

Watch Video Solution

3. A brass sheet has a circular hole of diameter 3 cm at $30^{\circ} \mathrm{C}$. What will be the change in diameter of the hole when it is heated to $120^{\circ} \mathrm{C}$?Given α_{b} rass $=2 \cdot 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$.

- Watch Video Solution

4. The co-efficient of line expansion brass is
$2 \cdot 10^{-5}{ }^{\circ} C^{-1}$, By how much the temperature
of a brass rod be increased so as increase its length by 4%.

D Watch Video Solution

5. A rod brass and a rod of iron differ by 14 cm in length at all temperature .What are their length at $0^{\circ} \mathrm{C} ?\left(\alpha\right.$ for iron $=11 \cdot 10^{-6} /{ }^{\circ} \mathrm{C}$ and α for brass=18 $\cdot \frac{10^{-6}}{\circ} C$)
6. The length of a copper rod at $20^{\circ} \mathrm{C}$ is found to be 150 cm when measured with a steel scale which gives correct reading at this temperature.What length of the same copper rod be found when measured with the same rod at $60^{\circ} \mathrm{C}$?

- Watch Video Solution

7. The co-efficient of volumn expansion of a liquid is $49 \cdot 10-5 C^{-1}$,By what percentage
does its density change on raising the temperature by $50^{\circ} \mathrm{C}$?

D Watch Video Solution

8. A glass container of volumn $200 \mathrm{~cm}^{3}$ is full of mercury at $20^{\circ} \mathrm{C}$.the temperature is raised to
$100^{\circ} \mathrm{C}$. Find how much mercury will be going out of the container.Given that cubical expansion of glass $\gamma_{g}=12 \cdot \frac{10^{-5}}{\circ} C$,cubical expansion $\operatorname{Hg} \gamma_{g}=18 \cdot \frac{10^{-4}}{\circ} C$.
9. An electric heater takes 15 min to raise a certain quantity of water from $0^{\circ} \mathrm{C}$ to its boiling point.If it takes another 80 min to turn all water into steam ,find the latent heat of vaporsation of water.

D Watch Video Solution

10. How much heat is required to convert 5 kg of ice at $-10^{\circ} \mathrm{C}$ into steam at $100^{\circ} \mathrm{C}$?
11. When 0.2 kg of ice at $0^{\circ} \mathrm{C}$ is mixed with 0.40 kg water at $50^{\circ} \mathrm{C}$,the resulting temperature is $7^{\circ} \mathrm{C}$,Find latent heat of fusion of ice,(Give `s$\mathrm{w}=4186 \mathrm{Jkg}^{\wedge}-1 \mathrm{~K}^{\wedge}-1$)

D Watch Video Solution

12. Assume the thermal conductivity of copper
is 4 times that of brass.Two rods of copper and brass having the same length and cross
section are joined end to end.The free and end of copper is at $0^{\circ} \mathrm{C}$ and the free end of brass is at $100^{\circ} \mathrm{C}$.Calculate the temperature of the junctionof thw two rods at equilibirum.

- Watch Video Solution

13. A black body at $27^{\circ} \mathrm{C}$ surrounds another at
$-73^{\circ} \mathrm{C}$.Calculate the net heat transferred per square metre of the body at higher temperature.

Exercise

1. Define co-efficient of linear expansion.Dose it depend on unit of length?

D Watch Video Solution

2. How does the density of a body change with
temperature ?
3. Why is some space left in between two rails?

D Watch Video Solution

4. Why does a thick glass trembler crack on pouring hot water into it?

D Watch Video Solution

5. Why are telegraph wires left loose between two poles?
(Watch Video Solution
6. Why do lakes freeze first at the surface?

- Watch Video Solution

7. What is the principle of calorimetry?

- Watch Video Solution

8. What are the units of heat in CGS and SI system.How are they related?

D Watch Video Solution
9. What is meant by thermal capacity?

D Watch Video Solution

10. Define water equivalent of a body. What is
its unit?

- Watch Video Solution

11. What is the relation between thermal capacity and specific heat?

- Watch Video Solution

12. Define specific heat of substance.Does it depend on pressure?
13. What is molar specific heat?How its related to specific heat?
(Watch Video Solution
14. What is fusion?

D Watch Video Solution

15. Define a melting point.Does it depend on pressure?
16. What is the effect of increase of pressure on melting point of ice?

D Watch Video Solution

17. Define a boiling point.Does it depand on pressure?
18. What do you mean by emissive power of a body?

(Watch Video Solution

19. What is a black body?

D Watch Video Solution

20. What is the emissivity of a perfectly black body?What is meant by absorving power?
21. What is meant by absorptive power?

D Watch Video Solution

22. What is the relation between the emissivity
and absorbing power of a black body?
(D) Watch Video Solution
23. State stefan's law of radiation?
24. Show that the co-efficient of area expansion of a rectangular sheet is twice its linear expansivity.

- Watch Video Solution

25. What are the co-efficient of expansion of solid? How are they related?

- Watch Video Solution

26. What is anomalous expansion of water? How is it useful in preserving acquatic life?

D Watch Video Solution

27. Find a relation to show the effect of temperature on the density .

D Watch Video Solution

28. What is the principle of calorimetry?

D Watch Video Solution

29. Explain why at high altitude,water boils below 100?

D Watch Video Solution

30. Explain what is meant by latent heat.
31. Latent heat of vaporisation of water is 540 $\mathrm{cal} / \mathrm{gm}$. Explain the meaning of the statement.

D Watch Video Solution

32. Woolen clothes are warmer than cotton cloths why?

- Watch Video Solution

33. Describe the construction of a blck body.

D Watch Video Solution

34. What is the emissivity of a perfectly black body?What is meant by absorving power?

D Watch Video Solution

35. Define co-efficient of linear,superficial and
volume expansions.

- Watch Video Solution

36. What is the principle of calorimetry?

- Watch Video Solution

37. Define unit heat.What is specific heat of solid? How does it defer from thermal capacity?

- Watch Video Solution

38. Two soilds of same mass but the specific heat of one being greater then that of the other are heated equally.Explain in which body the rise of temperature will be more.

D Watch Video Solution

39. Define melting point of a substance.State the effect of pressure on it.

D Watch Video Solution

40. Explain the different modes of transmission of heat.

D Watch Video Solution

41. What is meant by the thermal radiation?

- Watch Video Solution

42. What is meant by the co -efficient of thermal conductivity of a material?state its unit and dimension.
43. State Newton's law of cooling.Deduce it from strfan's law of radiation.

D Watch Video Solution

44. The difference between the length of a certain brass rod and that of a steel rod is claimed to be constant at all temperatures.Is it possible?

Watch Video Solution

45. Does the co-efficient of linear expansion depend on the scale of temperature and unit of length?

- Watch Video Solution

46. Explain when small pieces of ice pressed together, form a single block.
47. Explain why steam at $100^{\circ} \mathrm{C}$ usually produces more severe burn than water at the same temperature.

D Watch Video Solution

48. Explain why does drinking water kept in an earthern pot cool down ?

D Watch Video Solution

49. Why do we feel cooler under the fan?

D Watch Video Solution

50. Explain why at high altitude,water boils below 100?

D Watch Video Solution

51. Explain why food does not cook speedily at high altitudes.

- Watch Video Solution

52. Why does food get cooked more quickly in a pressure cooker?

- Watch Video Solution

53. Why white cloths are preferred in summer ?

- Watch Video Solution

54. Why is the bottom of a tea kettel blackended while its upper part is so polished?

D Watch Video Solution

55. Explain why a piece of iron appears to be cooler than a piece of wood in winter.

- Watch Video Solution

56. Explain why two layer of cloths of equal
thickness provide warmer covering than a single layer of double thickness.

- Watch Video Solution

57. Cloudy nights are warmer than clear nights-why?

D Watch Video Solution

58. At what common temperature would a block of wood and a block of metal feel equally cold or equally hot when touched with?

D Watch Video Solution

59. Explain why a piece of paper warpped
tightly on a wooden rod is found to gets charred qucikly.
60. Two thermometers are constructed in the same way except that one has a spherical bulb
and the other an elongated cylindrical bulb.which one will respond quickly to temperature changes?

- Watch Video Solution

61. A metallic solid sphere and a hollow sphere of same material and external radius are heated to the same temperature and allowed
to cool in the same environment .Which of the two has aa greater cooling rate?

D Watch Video Solution

62. A sphere ,a cubeand a thin circular plate,all made of the same meteriel and having the same mass are initially heated to a temperature of $200^{\circ} \mathrm{C}$. Which of them will cool fastest and which one slowest when left in air at room temperature?
63. Heat is generated continuosly in an electric heater ,but its temperature becomes constant after some time.Why?

- Watch Video Solution

64. A zinc rod is measured by means of a brass
scale (Which is correct at $0^{\circ} \mathrm{C}$) and is found to
be 1.0001 metre long at $10^{\circ} \mathrm{C}$.What is actual
length of the rod at $0^{\circ} \mathrm{C}$? $\left(\alpha\right.$ forZn $=29 \cdot \frac{10^{-6}}{\circ} C$,α for brass $\left.=19 \cdot \frac{10^{-6}}{\circ} C\right)$.

- Watch Video Solution

65. A hot ball of iron weighing 200 g is dropped into 500 g water at $10^{\circ} \mathrm{C}$.The resulting temperature is $22.8^{\circ} \mathrm{C}$.Calculate the temperature of the ball

- Watch Video Solution

66. The densities of two substance are $2: 3$ and
their specific heats are 0.12 and 0.09
respectively.compare their capacities per unit volume.

D Watch Video Solution

67. Calculate the minimum amount of water at
$15^{\circ} \mathrm{C}$ needed to cool 200 g of mercury at $80^{\circ} \mathrm{C}$
to a temperature of $24^{\circ} \mathrm{C}$ (specific heat of mercury=0.033).
68. A piece of metal weighing 50 g is heated to
a temperature of $1000^{\circ} \mathrm{C}$ and quickly dropped
into a clorimeter containing 200 g of water at
$25^{\circ} \mathrm{C}$. The water equivalent of the calorimeter
is 10 g and specific heat of the metal is 0.1.Calculate the rise in temperature of water.

D View Text Solution

69. How much steam at $100^{\circ} \mathrm{C}$ will just melt

3200 g of ice at $-10^{\circ} \mathrm{C}$?
70. Find the result of mixing 100 g of ice at $-12^{\circ} \mathrm{C}$ with 50 g of water at $92^{\circ} \mathrm{C}$.

D Watch Video Solution

71. Calculate the amount nof heat required to change 5.0 kg of a ice to $-20^{\circ} \mathrm{C}$ into steam at $100^{\circ} \mathrm{C}$.
72. Find the time in which a layer of ice 3 cm
thick on the surface of a pond will increase in
thickness by 1 mm when the temperature of
the surrounding is $-20^{\circ} \mathrm{C}$.the thermal conductivity of ice is $2.1 \mathrm{~W} / \mathrm{m} \mathrm{K}$, latent heatof ice $3.3610^{\wedge} 5 \mathrm{~J} / \mathrm{kg}$ and density is $900 \mathrm{k} \frac{g}{m^{-3}}$.

- Watch Video Solution

73. The opposite face of a cubic block of iron of cross-section 8 sq.cm are kept in touch with
steam and melting ice.Determine the quantity
of ice melted at the end of 5 minutes ($K=0.2$

CGS units).

D Watch Video Solution

74. Calculate the rate of loss heat through a glass window of area 1000sq.cm. and thickness

4 mm when the temperature inside is $37^{\circ} \mathrm{C}$ and outside is $5^{\circ} \mathrm{C}$ (K for glass $=0.0022$)

D Watch Video Solution

75. A body which has surface area of $5.0 \mathrm{~cm}^{2}$
and a temperature of 727 radiates $300 j$ of energy per minute.What is its emissivity?(
$\sigma=5.67 \cdot 10^{-8} \frac{W}{m^{-2}} K^{-4}$)

- Watch Video Solution

76. The temperature of abody is increased from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. By what fraction would the radiation emitted by it increase?
77. A body cools from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 5 minutes.If the temperature of the surrounding is $20^{\circ} \mathrm{C}$,Calculate the time it takes to cool from $60^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.

- Watch Video Solution

78. Two vessels of different materials are similar in size in every respect. The same quantity of ice filled in them gets melted in 20
min . and 40 min respectively. The ratio of their thermal conductivity is
A. $5: 6$
B. $6: 5$
C. 2:1
D. 1:3

Answer: A
(Watch Video Solution
79. The temperature of a black body increases
from $7^{\circ} \mathrm{C}$ to $287^{\circ} \mathrm{C}$. The rate of energy radiation
increases by
A. $\left(\frac{287}{4}\right)^{4}$
B. 16
C. 4
D. 2

Answer: C
80. A black body has maximum $\omega . L . \lambda m$ at 2000K.Its corresponding ω.L. at 3000 K is
A. $\frac{3}{2} \lambda m$
B. $\frac{2}{3} \lambda m$
C. 16/81lambdam` D. 81/16lambdam`

Answer: C
(D) Watch Video Solution
81. Two spheres made of same meterial have
radii in the ratio $1: 2$ both are the same temperature Ratio of heat radiation energy
emitted per sec by them is
A. $1: 2$
B. 1: 4
C. $1: 8$
D. 1: 16

Answer: B
82. A body cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 min.if
room temperature is $25^{\circ} \mathrm{C}$,the temperature of the body at the end of next 10 min will be
A. $38.53^{\circ} \mathrm{C}$
B. $40^{\circ} \mathrm{C}$
C. $45^{\circ} \mathrm{C}$
D. $42.86^{\circ} \mathrm{C}$

Answer: B

83. A body cools from $50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ in 5 min . Its

temperature comes down to $33.3^{\circ} \mathrm{C}$ in next 5
min .the temperature of surrounding is
A. $15^{\circ} \mathrm{C}$
B. $20^{\circ} \mathrm{C}$
C. $25^{\circ} \mathrm{C}$
D. $10^{\circ} \mathrm{C}$

Answer: B
84. There is a small hole at the centre of meta disc.On heating the size of the hole
A. decreases
B. increases
C. remains same
D. depends on β of the metal

Answer: B
85. If a bimetallic strip made of iron and copper is heated ,then
A. it gets twisted
B. it does not bend
C. it bends
D. with copper strip on the convex side

Answer: A
86. Which of the following is a correct relation
for soilds?

$$
\begin{aligned}
& \text { A. } \alpha==\frac{2}{3} \beta \\
& \text { B. } \gamma=\frac{3}{2} \beta \\
& \text { C. } \gamma=\frac{3}{2} \alpha \\
& \text { D. } \gamma=\frac{2}{3} \beta
\end{aligned}
$$

Answer: B

D Watch Video Solution
87. Sometimes ,a cycle with well inflated tyres left in sun,has its tube burst open.It is because
A. the volume of air inside the tube increases
B. the pressure of air inside the tube increases
C. the tube melts
D. both volume and pressure of air increases
88. Two spheres of same size are made of same
metal but one is hollow and the other is solid.They are heated to same temperature,then
A. both spheres will expand equally
B. hollow sphere will expand more than the
solid one

C. solid sphere will expand more than the

 solid oneD. none of these

Answer: A

D Watch Video Solution
89. Which of the following has the highest specific heat capacity?

A. Water

B. mercury
C. hydrogen
D. steel

Answer: C

D Watch Video Solution

90. Water is used in hot water bottels,because

A. it is a good conductor
B. it is easily available

C. it has low specific heat

D. it has a high specific heat

Answer: D

D Watch Video Solution

91. For a gram-molecule of an ideal gas (PV)/T is
A. 4.2 calories
B. 8.3 calories

C. $4.2^{\star} 10^{\wedge} 3$ ergs

D. 2 calories

Answer: D

D Watch Video Solution

92. Water equivalent of a substance is equal to

A. the mass of the substance
B. product of mass and specific heat
C. specific heat of the substance

D. none of these

Answer: B

D Watch Video Solution

93. The unit of thermal capacity is

A. joule/kelvin
B. joule/kg
C. joule/kg/kelvin
D. none of these

D Watch Video Solution

94. Specific heat of body depends upon

A. mass of the body
B. rise of temperature
C. amount of heat suppiled
D. none of these

95. The specific heat of water is

A. one
B. zero
C. infinity
D. unknown

Answer: A
96. The water equivalent of a block of solid
mass 200 g and of specific heat 0.4 cal
$g^{-1}\left({ }^{\circ} C\right)^{-}$is
A. $800 \operatorname{cal}\left({ }^{\circ} C\right)^{-1}$
B. 80 g
C. 500 cal
D. 500 g

Answer: B

- Watch Video Solution

97. With rise of pressure,the boiling point of a liquid
A. decreases
B. increases
C. does not change
D. nothing can be predicted

Answer: B
98. With increase in pressure ,the melting
point of substance which contract on melting
is
A. lowered
B. raised
C. unaffected
D. nothing can be predicted

Answer: A

D Watch Video Solution
99. A closed bottle containig water $30^{\circ} \mathrm{C}$ is
carried to the moon in sa spaceship.If it is
placed on the surface of the moon, What will
happen to the water as soon as the lid is
opened?
A. Water will boil
B. Water will freeze
C. nothing will happen to it
D. it will decompose into $h_{2} \mathrm{O}_{2}$
100. The ventilation of building is necessary
for
A. entry of outside oxygen
B. removing Co_{2} exhaled by us
C. entry of outside moisture
D. entry of outside heat and light

Answer: B
101. The melting point of an alloy is usually
A. lower than those of the constituents
B. higher than those of the constitients
C. in between thoes of the constituentes
D. equal to that of the heaviest constituent

Answer: A

D Watch Video Solution

102. What is the effect of increase of pressure on melting point of ice?
A. increased
B. decreased
C. remaining same
D. increased by 1° for every unit rise of
pressure

Answer: B

103. Boiling point of water
A. increases with increase of pressure
B. decreases with increase of pressure
C. not affected by pressure

D. none of these

Answer: A
104. A marble floor appears cold than a cemented floor, because marble has
A. low conductivity
B. high conductivity
C. high radiating capacity
D. high specific heat

Answer: B

105. Air is heated by
A. conduction
B. convection
C. eradiation

D. none of these

Answer: B
(D) Watch Video Solution
106. A perfect black body
A. absorbs all the radiations
B. reflects all radiations
C. absorbs and reflects all radiations
D. absorbs all radiations but reflects none.

Answer: A

D Watch Video Solution
107. The essence of kirchoff's law is that
A. a good absorber must be a bad radiator
B. a good absorber must be a good radiator
C. a good absorber must be a good conductor
D. a good absorber must be a bad conducter

Answer: B
108. The total radiation emitted by a perfectly
black body is proportional to
A. the absolute temperature
B. the square of absolute temperature
C. the cube of absoulte temperature
D. the fourth power
of absoulte temperature

Answer: D
109. Conversion of heat into electrical energy
can be achieved by Accroding to newton's law
of cooling (provided the difference of temperature is small), the rate of loss of heat
is proportional to
A. transistor
B. voltmeter
C. thermocouple
D. photo-electric cell

D Watch Video Solution

110. Accroding to newton's law of cooling
(provided the difference of temperture is small
),the rate of loss of heat is proportional to
A. the excess temperature
B. the square of excess temperature
C. the cube of excess temperature
D. the fourth power of excess temperature

- Watch Video Solution

111. An ideal material for making cooking vessels must have
A. Small conductivity and learge heat capacity
B. large heat capacity and large
conductivity

C.small heat capacity and large

conductivity
D.small heat capacity and small conductivity

Answer: C

D Watch Video Solution
112. A hot body will radiate heat most rapidly
,if its surface is
A. White and polished
B. white and rough
C. black and polished
D. black and rough

Answer: D

D Watch Video Solution

113. If the temperature of sun is doubled,the rate of energy received on earth wil be increased by a factor roughly
A. 2
B. 3
C. 8
D. 16

Answer: D

D Watch Video Solution

114. which of the following cylindrical rods will conduct most heat,when their ends are maintained at the same steady temperature?
A. length 100 cm ,radius 1 cm
B. length 100 cm ,radius 2 cm
C. legnth 200 cm ,radius 2 cm
D. length 200 cm ,radius 1 cm

Answer: B

D Watch Video Solution
115. Two spheres of same material have radii 1 m and 4 m and temperature 4000 K and 2000 K
respectively. The energy radiated per second by the first sphere is
A. greater than that by the second
B. less than that by the second
C. equal in both cases
D. the information is incomplete to draw any conclusion

Answer: C

D Watch Video Solution

116. A black body at a high temperature T radiates energy at the rate of E . When the temperature falls to $\mathrm{T} / 2$,the radiated energy will be
A. $\mathrm{E} / 4$
B. E/2
C. 2 E
D. E/16

Answer: D

117. A spherical black body with radius 12 cm

 radiates 450 W power at $500 \mathrm{~K}, \mathrm{If}$ the radius were halved and the temperature doubled,the power radiated in watt would beA. 225
B. 450
C. 900
D. 1800
118. A sphere ,a cubeand a thin circular plate,all made of the same meteriel and having the same mass are initially heated to a temperature of $3000^{\circ} \mathrm{C}$. Which of these will cool fastest
A. sphere

B. cube

C. plate

D. All will take same time

Answer: C

D Watch Video Solution

119. A polished metal plate with a rough black spot on it is heated to about 1400 K and quickly taken to a dark room. Which of the following statements is ture?
A. The spot will appear brighter than the plate.
B. The spot will appear darke than the plate
C. The spot and the plate will appear
equally bright
D. The sopt and the plate will not be
visiblein the dark room

Answer: A
\square

