©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BINA LIBRARY PHYSICS (ASSAMESE ENGLISH)

WORK,ENERGY AND POWER

Example

1. Find the angel between the vectors
\bar{A} and \bar{B},where
$\bar{A}=\hat{i}+2 \hat{j}-2 \hat{k}$
$\bar{B}=2 \hat{i}-4 \hat{j}-4 \hat{k}$

- Watch Video Solution

2. A particle moves from one position vector
$(3 \hat{i}+2 \hat{j}-6 \hat{k})$ to the position vector $(14 \hat{i}+13 \hat{j}+9 \hat{k})$ in meter when a unifrom force $(4 \hat{i}+\hat{j}+3 \hat{k})$ Nacts on it.Calculate the work done .

- Watch Video Solution

3. show the vector represented by

$2 \hat{i}+4 \hat{j}+2 \hat{k}+$ and $\hat{i}+2 \hat{j}-5 \hat{k}$
perpendiculer to each other.

D Watch Video Solution

4. For what value of λ
$\bar{A}=2 \hat{j}+\lambda \hat{j}+\hat{k}$ and $\bar{B}=4 \hat{i}-2 \hat{j}-2 \hat{k}$ are
perpendiculer to each other?

D Watch Video Solution

5. The sum and difference of two vectors are perpendicular to each other. Prove that the vectors are equal in magnitude.

- Watch Video Solution

6. Calculate the work doen in moving a partical along a vector $\bar{X}=3 \hat{i}+2 \hat{j}+\hat{k}$ if the applied
forced is $\bar{F}=(2 \hat{i}+4 \hat{j}+5 \hat{k})$

- Watch Video Solution

7. A particle moves from one position vector
$(3 \hat{i}+2 \hat{j}-6 \hat{k})$ to the position vector $(14 \hat{i}+13 \hat{j}+9 \hat{k})$ in meter when a unifrom force $(4 \hat{i}+\hat{j}+3 \hat{k})$ Nacts on it.Calculate the work done .

- Watch Video Solution

8. A boat is being towed at a speed of 20 m per second.The tension in the towling is 6KN.Calculate the power suppiled to boat.
9. A mass of 5.0 kg is pulled along a horizontal plane by a force in a direction making an angle 45° with the horizontal.The body moves with uniform velocity through a distance of 10 metre. Find the work done by the force(Coefficient of firction=0.3).

D Watch Video Solution

10. An automobil,e weighing 2000kg climbs up
a hill that rises 1 m in 20 m of its lenth at the
rate of $36 \mathrm{~km} / \mathrm{hr}$.Find the power developed by the engine.

- Watch Video Solution

11. Calculate the gain in kinetic engery of a body of mass 10 kg after falling from rest for 2 seconds.
12. A bullet of mass 10 g is fired from a gun with a velocity of $800 \mathrm{~ms}^{-1}$.After passing through a mud wall 100 cm thick its velocity drops to $100 \mathrm{~ms}^{-1}$.Calculate the average resistance offered by the wall.

- Watch Video Solution

13. A pump extracts water from 50 m depth and ejects per sec 10 kg water with a velocity of $10 \mathrm{~m} / \mathrm{s}$.Calculate is power.

- Watch Video Solution

14. A ball is dropped from rest at a height

12 m .If is loses 25% of its kinetic engeryt of striking the ground,Calculate the height to which it bounces.

- Watch Video Solution

15. A ball falls under gravity from a height of

10 m with an initial velocity. It collides with the
ground,loses 50% of its engery and then rises
to the same height.Find the initial velocity.

D Watch Video Solution

16. If the momentum of a partical increased by
50%,what is corresponding increases kinetic engery?

D Watch Video Solution
17. Two bodies of masses of 1 g and 4 g are moving with equal kinetic engergies. Find the ratio of their momenta.

D Watch Video Solution

18. A ball is dropped from height of 15 m . After striking the ground, it bounces a height of 10 m
.What fraction of K.E it loses on striking the ground?
19. A partical moves 0.5 kg travels in a straight line with a velocity $v=a x^{\frac{3}{2}}$,where $a=5 m^{-\frac{1}{2}} s^{-1}$.What is the work doen by the net force during the displacment from $X=0$ to $X=2 m ?$

D Watch Video Solution

20. A partiale of mass m is moving in a circular path of radius r such that its centripetal acceleration is varying with time t as $\mathrm{a}_{-} \mathrm{c}=$
$k^{\wedge} 2 \mathrm{rt}^{\wedge} 2$, where k is constant. The power delivered to the particle by the forces acting on it is

D Watch Video Solution

21. A bullet of mass 10 g is fired into 2 kg pendulum bob and becomes embedded in it.If the pendulum rises to a vertical distance of $10 \mathrm{~cm} .$. Find the initial velocity of the bullet.
22. A bullet of mass 12 g and horizental velocity
$60 \mathrm{~ms}^{-1}$ strikes a block of wood of mass 0.5 kg and suspenduded by a string.The bullet instantly comes to rest with respect to the block.Calculate the height to which the block rises.

- Watch Video Solution

23. A partical of mass $4 \cdot 10^{-27} \mathrm{~kg}$ moving with
velocity one $\mathrm{m} /$ seccolides with another similar partical at rest inelastically.If the partical after
colision combine togather,Find the velocity of the combined mass.

D Watch Video Solution

24. A steel ball of radius 2 cm is initially at rest.It is stuck head on by another steel ball of radius 4 cm moving with a velocity of
$0.72 \mathrm{~ms}^{\wedge}$-1.Assuming that the collosion in completely inceelastic.Calculate the velocity of the balls after collision.
25. A 1 kg partical moving with a velocity $5 \mathrm{~m} / \mathrm{s}$ makes an elastic head on collison with a 2 kg partical initially at rest. Find the final velocity of each partical.

D Watch Video Solution

26. A partical of mass m 1 is travelling with avelocity u1 strikes head-on against partical of mass m 2 at rest.After collision the particales move with a velocity v1 and v2 respectively
show that the ratio of decrese in K.E of the
partical of mass $m 1$ to its original K.E is given
By $\frac{4 m 1 m 2}{(m 1+m 2)^{2}}$

D Watch Video Solution

Exercise

1. What is meant by power? How it is related to work?
2. Define energy. It is a scaler or vector quantity?

- Watch Video Solution

3. Define work.What is its dimmensional formula.
(Watch Video Solution
4. What is the work done by the tension of the string in a simple pendulum?

D Watch Video Solution
5. A man holds a 10 kg box 2 m above the ground.What is the work done?
6. What is the orientation of force to displacement so that work done is negative?

D Watch Video Solution

7. What is the work done on a body of mass m moving around a horizontal circle of radius r ?

- Watch Video Solution

8. what are the characteristic of an elastic collision?

- Watch Video Solution

9. Define the co-efficient of restitution.

- Watch Video Solution

10. What is perfectly inelastic collision?
11. What is elastic potential energy?

D Watch Video Solution
12. Can kinetic energy be negative?

- Watch Video Solution

13. Can a body posses KE without Momentum?

D Watch Video Solution
14. Can a body posses momentum without KE?

- Watch Video Solution

15. Does a man sitting in a moving train posses

KE?
(Watch Video Solution
16. Give an example where work done by a force is zero.

D Watch Video Solution

17. What is work? It is a scalar or a vector?

What do you mean by watt?

- Watch Video Solution

18. Show that power= force X velocity

- Watch Video Solution

19. What is potential energy ?How is it measured?

- Watch Video Solution

20. Define Kinetic energy of a body.Derived an expression for the K.E of a body in a motion.
21. Derived an expression for the work done by a constant force.

- Watch Video Solution

22. Verify the law of conservation mechanicalenergy for a freely falling body.

- Watch Video Solution

23. Derive an expression for potential energy of a stretched elastic spring.

D Watch Video Solution
24. State and prove work-energy theorem.

D Watch Video Solution

25. State the principle of conservation of energy.How can it be proved in case of a freely
falling body?

D Watch Video Solution

26. Show that work done on a body or by the body is equal to the net change in its kinetic energy.

- Watch Video Solution

27. Show that the sum of potential and kinetic energy of a body falling freely under gravity is
constant.What happens to theses energies when the body hits the ground?

D Watch Video Solution

28. Distinguish between elastic and inelastic collisions.

D Watch Video Solution

29. Show that in one dimensional elastic collision of two particales of equal mass,the
partical exchange velocities after collisions.

D Watch Video Solution

30. Define the co-efficient of restitution. A
particle of a mass m moving with a velocity u struck head-on against another particle of mass Km at rest.After collision the particles move with velocities V1 and V2 respectively.If the collision is prefectly elastic.Prove that the loss of kinetic energyof the particle with mass m is maximum when $\mathrm{k}=1$.

Watch Video Solution

31. The momentum of two different masses are same.Show that the lighter mass has greater kinetic engery.

D Watch Video Solution

32. The K.E of two different masses are equal.Which of the masses,lighter or heavier will have greater momentum?

33. If K.E of a body is doubled,what happens to

 its momentum?
D Watch Video Solution

34. Two bodies having masses 1 g and 4 g are moving with equal K.E find the ratio of their linear momentum.
35. water of a river is striking the pillar of a bridge.Is work being done in this?

D Watch Video Solution

36. A man is swimming upstream over a river
such that he appears to be at rest with
respect to the shore.Is he doing work?

D Watch Video Solution

37. How much work is done on a body of mass
m in moving it around a horizontal circle of radius R ?

- Watch Video Solution

38. Give an example where work done by a force is zero.

- Watch Video Solution

39. What is the power needed to maintain uniform circuler motion?

D Watch Video Solution
40. Can a body have energy without having momentum?
(D) Watch Video Solution
41. A ballon filled with hydrogen rises upward gaining both kinetic and potential energy.Does
it imply violation of conservation of energy?

D Watch Video Solution

42. A man of mass 60 kg walks up to the top of
a building of height 15 m . Calculate the increase in potential energy.
43. A man cycles up a hill whoes slope is 1 m in 25 at the rate of $10 \mathrm{~km} / \mathrm{hr}$.the weight of the man and the cycle is 100 kg .Find the power at which he is working.

- Watch Video Solution

44. A bullet of mass 12 g strikes a soild surface
at a speed of $400 \mathrm{~m} / \mathrm{s}$. It penetrates to a depth
of 3 cm .Calculate the average resistance offered to the bullet.
45. A body of mass 1 kg falls from the top of a cliff 50 m high and buries itself one metre deep in mud.Find the average resistance offered by a mud and the time of penetration.

D Watch Video Solution

46. A force of 1000 dynes acts on a particle of mass 500 g for 10 seconds.Calculate the
velocity of the particle and kinetic energy produced.

D Watch Video Solution

47. Calculate the power of a motor in kilo-watt ,which is capable of rising 200 kg of water in
five minutes from a ell 120 meter deep [

$$
\left.g=10 m s^{-2}\right]
$$

D Watch Video Solution

48. A pump lifts 20 kg of water in one minute to a vertical height of 30 m . Find the power of the pump.

D Watch Video Solution

49. Two bodies having masses 1 g and 4 g are moving with equal K.E find the ratio of their linear momentum.
50. A 200 g ball falls from rest through air. If its speed is $10 \mathrm{~m} / \mathrm{s}$ after having through a distance of 20 m , how much energy was lost due to friction against air?

- Watch Video Solution

51. A bullet of mass 100 g strikes a wooden plank with a velocity of $300 m s^{-1}$ and emerges with a velocity $100 \mathrm{~ms}^{-1}$.Calculate the work done by the resistive force on the bullet
52. A force of 100 dynes acts on a particle of mass 0.5 kg for 10 sec . Calculate the velocity of the particle and the K.E produced.

- Watch Video Solution

53. An engine lifts 200 kg of metal to a vertical
height of 30 m in one minute.Find the horsepower of the engine.

Watch Video Solution

54. A car of weight 1000 kg moves with a uniform speed of $36 \mathrm{Km} / \mathrm{hr}$ up an inclined road.The inclined road makes an angle of 30° with the horizontal.Neglecting friction,Calculate the power of the engine of the car.

- Watch Video Solution

55. An engine of weight one metric ton is going up an inclined plane , making an angle 30° with the horizental at the rate of 36 Km h^{-1}.If the co-efficient of frinction is 0.6.calculate the power of engine in KW

D Watch Video Solution

56. A ball of mass 1.2 kg moving with velocity
$20 \mathrm{~cm} / \mathrm{s}$ collides with another body of equal mass at rest.Find the loss of K.E of the
system,assuming that co -efficient of restitutionis 0.6.

D Watch Video Solution

57. A block of mass 2 kg moving with certain velocity collides with a block of mass 3 kg at rest ,After collision the blocks move togather.Find the loss of K.E in the collision.

D Watch Video Solution

58. A block of mass 2 kg moving at $2.0 \mathrm{~m} / \mathrm{s}$ collides with another block of equal mass kept at rest.find the maximum possible loss of K.E due to the collision.

- Watch Video Solution

59. A block of 1.2 kg moving at $20 \mathrm{~cm} / \mathrm{s}$ collides
head-on with a simmilar block kept rest.The coefficient of restitution is $3 / 5$. Find the loss of K.E during the collision.
60. A position dependent force $\mathrm{F}=\left(7-2 \mathrm{x}+3 x^{2}\right) \mathrm{N}$ acts on a small body of mass 2 kg and displaces it from $x=0$ to $x=5 m$. Work doen in joule is.
A. 135
B. 70
C. 35
D. 270

Answer: C

D Watch Video Solution

61. A body constrained to move in y directions is sunjected to a force $\mathrm{F}=(-2 \hat{i}+15 \hat{j}+6 \hat{k})$
N. What is the work doen by the force in moving through a distance of 10 m along the y-axis?
A. 20J
B. 150 J

C. 160J

D. 190J

Answer: B

- Watch Video Solution

62. The K.E acquired by a mass m travelling a certain distance d starting from rest under the action of a constant force is directluy prportional to
A. m
B. `sqrtm
C. $\frac{1}{\sqrt{m}}$
D. independent of m

Answer: D

D Watch Video Solution

63. A 4 kg mass and a 1 kg mass are moving with equal K.E.The ratio of their momentum is
A. $1: 2$
B. 1:1
C. 2:1
D. $4: 1$

Answer: C

D Watch Video Solution

64. If the momentum of a body increases by

50\%,its K.E,increases by
A. 5
B. 1
C. 125
D. 1.5

Answer: C

D Watch Video Solution
65. A ball whoes $K . E$ is K is projected at an angle 45° to the horizental.The K.E of the ball at the hightest point of flight is
A. K
B. $\frac{k}{\sqrt{2}}$
C. k/2
D. Zero

Answer: C

D Watch Video Solution

66. A stationary particle explodes into two particle of masses m 1 and m 2 and move in
opposite directions with velocities v1 and v2.The ratio of their K.E is
A. $\mathrm{m} 2 / \mathrm{m} 1$
B. $\mathrm{m} 1 / \mathrm{m} 2$
C. 1
D. $\mathrm{m} 1 \mathrm{v} 1 / \mathrm{m} 1 \mathrm{v} 2$

Answer: A
(Watch Video Solution
67. Two bodies with K.E in ratio 4:1 are moving
with equal linear momentum. The ratio of their masses is
A. $1: 2$
B. 1:1
C. $4: 1$
D. 1: 4

Answer: D

D Watch Video Solution
68. The P.E of a string when stretched by 2 cm
is U.Its P.E when stretched by 10 cm is
A. $\mathrm{U} / 25$
B. $\mathrm{U} / 5$
C. 25 U
D. 5 U

Answer: C
(Watch Video Solution
69. A spring of force constant $800 \mathrm{~N} / \mathrm{m}$ has an extension of 5 cm . The work done in extending it from 5 cm to 15 cm is
A. 16 J
B. 8 J
C. 32)
D. 24J

Answer: B

70. If water falls from a dam into a turbine

 wheel 19.6 m below, the velocity of the water at the turbine isA. $9.8 \mathrm{~m} / \mathrm{s}$
B. $19.6 \mathrm{~m} / \mathrm{s}$
C. $39.2 \mathrm{~m} / \mathrm{s}$
D. $9.8 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

71. An elastic ball is dropped from a height to

100m.It lose s 20% of its energy .To what height will the ball rebound?
A. 80 m
B. 40 m
C. 60 m
D. 20 m

Answer: A

D Watch Video Solution

72. A ball dropped from a height og h.lf the co-

 efficient of restitution be e, to what height will it rise after jumping twice from the ground.A. eh/2
B. 2eh
C. eh

$$
\text { D. } e^{4} h
$$

Answer: D

73. A ball of mass m moving with a constant velocity strikes against a ball of same mass at rest.If e is the co-efficient if restitution what will be the ratio of velocity of two balls after collision?
A. $(1-\mathrm{e}) /(1+e)$
B. $(\mathrm{e}-\mathrm{1}) /(\mathrm{e}+1)$
C. (1+e)/(1-E)
D. $(2+e) /(e-1)$

Answer: A

D Watch Video Solution

74. Two particle of masses 1 g and 4 g are moving with equal K.E. What is the ratio of their linear momentum?
A. $4: 1$
B. $\sqrt{2}: 1$
C. 1:2
D. 1: 10

Answer: C

D Watch Video Solution

75. A body of mass m is moved to a height to
equal to the radius of earth.The increase in P.E
is
A. $m g R$
B. $1 / 2 \mathrm{mgR}$
C. 2 mgR
D. $1 / 4 \mathrm{mgR}$

Answer: B

D Watch Video Solution

76. The momentum of a body is doubled. Its
K.E will
A. be doubled
B. be halved
C. increase four times
D. decrease four times

Answer: C

D Watch Video Solution

77. A wound spring has

A. no energy
B. P.E
C. K.E
D. electric energy

78. The unit of energy is

A. joule-sec

B. newton-metre

C. newtone/meter
D. joule/sec

Answer: B
79. If a force F is applied on a body and it moves with a velocity V ,the power will be
A. $F \cdot V$
B. F/v
C. F / v^{2}
D. $\mathrm{F}^{\star} v^{2}$

Answer:

- Watch Video Solution

80. If m is the mass and E the K.E of a body then its linear momenta is
A. $m \sqrt{E}$
B. $2 \sqrt{m E}$
C. $\sqrt{m} \cdot E$
D. $\sqrt{2 m E}$

Answer: D

D Watch Video Solution
81. The power of awater pump is 2 kw .lf $\mathrm{g}=10$
$m s^{-1}$ the amount of water it can raise to a height of 10 m in minute is
A. 2000litre

B. 1000litre

C. 100litre

D. 1200litre

Answer: D

82. The P.E of a string when stretched by 2 cm
is U.Its P.E when stretched by 10 cm is
A. $\mathrm{U} / 25$
B. U/5
C. 5 U
D. 25 U

Answer: D

- Watch Video Solution

83. A bullet hits and gets embedded in a solid
block resting on a frictionless table. What is
conserved?
A. Momentum and K.E
B. momentum alone
C. K.E alone
D. neither momentum nor K.E

Answer: B

D Watch Video Solution

