

MATHS

BOOKS - NAGEEN PRAKASHAN ENGLISH

BINOMIAL THEOREM

Example

1. Using binomial theorem, write down the expansions of the

following: $(2x + 3y)^5$

3. Simplify with the help of binomial theorm. $(x+1)^5 + (x-1)^5$

4. Find an approximation of $(0.99)^5$ using the first three terms of its expansion.

5. Using binomial theorem, prove that $\left(101\right)^{50}>100^{50}+99^{50}$.

6. If number of terms in the expansion of $\left(x-2y+3z\right)^n$ are

Watch Video Solution

45, then n is equal to

7. Prove that $\sum_{r=0}^{n} C_r . 4^r = 5^n$

Watch Video Solution

8. If $\left(1-x+x^2\right)^4=1+P_1x+P_2x^2+P_3x^3+...+P_8x^8,$ then prove that : $P_2+P_4+P_6+P_8=40$ and $P_1+P_3+P_5+P_7=-40.$

9. If o be the sum of odd terms and E that of even terms in the expansion of $(x+a)^n$ prove that: (i)

$$O^2-E^2=\left(x^2-a^2
ight)^n$$
 (ii) $4OE=\left(x+a
ight)^{2n}-\left(x-a
ight)^{2n}$ (iii) $2ig(O^2+E^2ig)=\left(x+a
ight)^{2n}+\left(x-a
ight)^{2n}$

10. Find the 8th term in the expansion of
$$\left(\frac{2x}{3} - \frac{3}{5x}\right)^{12}$$

11. Find the 13^{th} term in the expansion of $\left(9x-rac{1}{3\sqrt{x}}
ight)^{18},\,x
eq0$

- **12.** Find the 15th term in the expansion of $(\sqrt{x}-\sqrt{y})^{17}$
 - Watch Video Solution

- **13.** Find the middle term in the expansion of $\left(3x-\frac{1}{2x}\right)^{10}$
 - Watch Video Solution

- **14.** Find the middle term in the expansion of $\left(1+2x+x^2\right)^{10}$
 - **Watch Video Solution**

15. Find the 4th term from the end in the expansion of $\left(1-3x\right)^{10}$

16. Show that the middle term in the expansion of $(1+x)^{2n}is\frac{(1.\ 3.\ 5(2n-1))}{n!}2^nx^n, wheren$ is a positive integer.

17. about to only mathematics

18. about to only mathematics

Watch Video Solution

19. Find the coefficient of x^6 in the expansion of $\left(2x^3-\frac{1}{3x^3}\right)^{10}$

Watch Video Solution

20. Find the coefficient of x^7 in the expansion of $\left(2x^2-\frac{1}{x}\right)^{20}$

21. Find the coefficient of x^{-25} in the expansion of

$$\left(rac{x^2}{2}-rac{3}{x^3}
ight)^{15}$$

Watch Video Solution

22. Find the coefficient of x^6 . y^3 in the expansion of $(2x+y)^9$

Watch Video Solution

23. Find the constant term in the expansion of $\left(2x^4-\frac{1}{3x^7}\right)^{11}$

24. Find the terms independent of x in the expansion of

$$\left(\sqrt{x}+\frac{1}{3x^2}\right)^{10}$$

Watch Video Solution

25. Find the term in the expansion of $\left(2x^2-\frac{3}{x}\right)^{11}$ Which contains x^6

Watch Video Solution

26. If the coefficient of x^2 and x^3 are equal in the expansion of $(3+ax)^9$, then find the value of 'a'

27. If m and n are positive integers, then prove that the coefficients of x^m and x^n are equal in the expansion of $(1+x)^{m+n}$

28. Find the coefficient of x^5 in the product $\left(1+2x\right)^6\left(1-x\right)^7$ using binomial theorem.

29. If the coefficients of a^{r-1} , $a^rand\ a^{r+1}$ in the binomial expansion of $(1+a)^n$ are in A.P., prove that $n^2-on(4r+1)+4r^2-2=0.$

30. Evaluate:

$$1 + ^{15}C_1 + ^{15}C_2 + ^{15}C_3 + \dots + ^{15}C_{15}$$

Watch Video Solution

31. If

 $\left(1+x
ight)^n=C_0+C_1.\,x+C_2.\,x^2+C_3.\,x^3+.....+C_n.\,x^n,$ then

$$C_0 + 2C_1 + 4C_2 + 6C_3 + ... + 2n$$
. $C_n = 1 + n \cdot 2^n$

32. If $C_0, C_1, C_2..., C_n$, denote the binomial coefficients in the expansion of $(1+x)^n$, then $\frac{C_1}{2}+\frac{C_3}{4}+\frac{C_5}{6}+.....$ is

equal to

Watch Video Solution

33. If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$

then ${C_0}^2 + {C_1}^2 + {C_2}^2 + ... + {C_n}^2$ is equal to

Watch Video Solution

34. If $(1+x)^n = C_0 + C_1 x m + C_2 x^2 + \ldots + C_n x^n$,

then

 $C_0C_1 + C_1C_2 + C_2C_3 + \ldots + C_{n-1}C_n$ is equal to :

35. Expand $(2X+5Y)^5$

Watch Video Solution

36. Expand $(3x - 2y)^4$

Watch Video Solution

37. Simplify with the help of binomial theorm.

$$(x+1)^5 + (x-1)^5$$

38. Find an approximation of $(0.99)^5$ using the first three terms of its expansion.

Watch Video Solution

39. Using binomial theorem, prove that $(101)^{50} > 100^{50} + 99^{50}$.

40. If number of terms in the expansion of $\left(x-2y+3z\right)^n$ are 45, then n is equal to

- **41.** Prove that $\sum\limits_{r=0}^{n} C_r.4^r=5^n$
 - Watch Video Solution

42.

then prove that :

 $P_2 + P_4 +_6 + P_8 = 40$ and $P_1 + P_3 + P_5 + P_7 = -40$

- **43.** If o be the sum of odd terms and E that of even terms in the expansion of $\left(x+a\right)^n$ prove that: (i)
- $O^2-E^2=\left(x^2-a^2
 ight)^n$ (ii) $4OE=\left(x+a
 ight)^{2n}-\left(x-a
 ight)^{2n}$ (iii) $2ig(O^2+E^2ig)=\left(x+a
 ight)^{2n}+\left(x-a
 ight)^{2n}$

44. Find the 8th term in the expansion of
$$\left(\frac{2x}{3} - \frac{3}{5x}\right)^{12}$$

45. Find the 13^{th} term in the expansion of $\left(9x-\frac{1}{3\sqrt{x}}\right)^{18},\,x\neq0$

- **46.** Find the 15th term in the expansion of $\left(\sqrt{x}-\sqrt{y}
 ight)^{17}$
 - **Watch Video Solution**

47. Find the middle term in the expansion of $\left(3x-\frac{1}{2x}\right)^{16}$

48. Find the middle term in the expansion of $\left(1+2x+x^2
ight)^{10}$

49. Find the 4th term from the end in the expansion of $\left(1-3x\right)^{10}$

50. Show that the middle term in the expansion of $(1+x)^{2n}$

is
$$\dfrac{1.3.5\ldots(2n-1)}{n!}.\ 2^n.\ x^n$$
 , where $n\in N.$

51. about to only mathematics

52. about to only mathematics

53. Find the coefficient of x^6 in the expansion of

$$\left(2x^3-\frac{1}{3x^3}\right)^{10}$$

Watch Video Solution

54. Find the coefficient of x^7 in the expansion of $\left(2x^2-rac{1}{x}
ight)^{20}$

Watch Video Solution

55. Find the coefficient of x^{-25} in the expansion of $\left(\frac{x^2}{2}-\frac{3}{x^3}\right)^{15}$

56. Find the coefficient of x^6y^3 in the expansion of $(x+2y)^9$.

Watch Video Solution

57. Find the constant term in the expansion of $\left(2x^4-\frac{1}{3x^7}\right)^{11}$

Watch Video Solution

58. Find the constant term in the expansion of $\left(\sqrt{x} + \frac{1}{3x^2}\right)^{10}.$

59. Prove that there is no term involving x^6 in the expansion of $\left(2x^2-\frac{3}{x}\right)^{11}$, where $\neq 0$.

Watch Video Solution

60. If the coefficients of $x^2 and \ x^3$ in the expansion o $(3+ax)^9$ are the same, then the value of a is $-\frac{7}{9}$ b. $-\frac{9}{7}$ c. $\frac{7}{9}$ d. $\frac{9}{7}$

Watch Video Solution

61. In the binomial expansion of $\left(1+a\right)^{m+n}$, prove that the coefficient of $a^m and \ a^n$ are equal.

62. Find the coefficient of x^5 in the expansion of $\left(1+2x\right)^6\left(1-x\right)^7$.

63. If the coefficients of a^{r-1} , $a^rand\ a^{r+1}$ in the binomial expansion of $(1+a)^n$ are in A.P., prove that $n^2-on(4r+1)+4r^2-2=0.$

64. Evaluate:

$$1 + ^{15}C_1 + ^{15}C_2 + ^{15}C_3 + \dots + ^{15}C_{15}$$

 $ext{if} \ \ \left(1+x
ight)^n=C_0+C_1.\ x+C_2.\ x^2+C_3.\ x^3+.....+C_n.\ x^n,$ then prove that

$$C_0 + 2C_1 + 4C_2 + 6C_3 + \ldots + 2n$$
. $C_n = 1 + n \cdot 2^n$

66. Prove
$$.^{n} C_{0} + \frac{.^{n} C_{1}}{2} + \frac{.^{n} C_{2}}{3} + \ldots + \frac{.^{n} C_{n}}{n+1} = \frac{2^{n+1}-1}{n+1}.$$

that

67. If $C_0, C_1, C_2 \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in C_n$ are the binomial coefficient in the expansion of $(1+x)^n$ then prove that:

 $C_0^2 + C_1^2 + C_2^2 + \hat{\mathfrak{a}} \epsilon_{\scriptscriptstyle |} \hat{\mathfrak{a}} \epsilon_{\scriptscriptstyle |} \cdot . \ + C_n^2 = rac{|2n|}{|n|n|}$

expansion of $\left(1+x\right)^n$ then prove that:

if $C_0C_1C_2$, $\hat{\mathbf{a}}\in \hat{\mathbf{a}}\in C_n$ are the binomial coefficients in the

$$C_0C_2+C_1C_3+C_2C_4+\hat{\mathfrak{a}}\mathbf{\mathfrak{E}}_{\scriptscriptstyle |}^{\scriptscriptstyle |}\hat{\mathfrak{a}}\mathbf{\mathfrak{E}}_{\scriptscriptstyle |}^{\scriptscriptstyle |}+C_{n-2}C_n=rac{|\underline{2}n}{|\underline{n}-2|\underline{n}+2}$$

1. Expand using binomial theorem:

$$(i)(1-2x)^4 \qquad \qquad (ii)igg(1+rac{1}{x^2}igg)^4$$

2. Evaluate using binomial theorem:

$$(i)ig(\sqrt{2}+1ig)^6+ig(\sqrt{2}-1ig)^6$$

$$(ii)ig(\sqrt{5}+\sqrt{2}ig)^4-ig(\sqrt{5}-\sqrt{2}ig)^4$$

- **3.** Find the value of $\left(\sqrt{2}+1\right)^6-\left(\sqrt{2}-1\right)^6$
 - Watch Video Solution

- **4.** If $x=\sqrt{5}+\sqrt{3}$ and $y=\sqrt{5}-\sqrt{3}$, then x^4-y^4
 - **Watch Video Solution**

5. Find the values of the following using binomial theorem:

- $(i)49^4$ $(ii)(1.1)^4$
- $(iii)101^3$ $(iv)(0.9)^5$
 - Watch Video Solution

6. By using binomial theorem find which number is greater $(1.2)^{3000}$ or 600?

7. Prove that $\sum_{r=0}^n {}^nC_r.3^r=4^n$

- **8.** If n is a positive integer then find the number of terms in the expansion of $(x+y-2z)^n$
 - Watch Video Solution

- **9.** Find the number of terms in the expansion of $\left(1+3x+3x^2+x^3\right)^{15}$
 - Watch Video Solution

- **10.** If $\left(1+x+x^2\right)^n=1+a_1x+a_2x^2+a_3x^3$
- $+\hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{a}}$. . $+a_{2n}$. x^{2n} then prove that:
- $(i)a_1+a_3+a_5+\hat{\mathfrak{a}} \in [...+a_{2n-1}=rac{3^n-1}{2}]$
- $(ii)a_2+a_4+a_6+\hat{\mathfrak{a}} \mathcal{E}_{\scriptscriptstyle \mathsf{I}}^{\scriptscriptstyle \mathsf{I}} \hat{\mathfrak{a}} \mathcal{E}_{\scriptscriptstyle \mathsf{I}}^{\scriptscriptstyle \mathsf{I}}+a_{2n}=rac{3^n-1}{2}$

Match Mides Colution

11. Using binomial theorem, prove that $2^{3n}-7n-1$ is divisible by 49 , where $n\in N$

Watch Video Solution

12. Expand using binomial theorem:

$$(i)(1-2x)^4$$

Watch Video Solution

13. Evaluate using binomial theorem:

$$(i)ig(\sqrt{2}+1ig)^6+ig(\sqrt{2}-1ig)^6$$

$$(ii)ig(\sqrt{5}+\sqrt{2}ig)^4-ig(\sqrt{5}-\sqrt{2}ig)^4$$

14. Using binomial theorem, expand $\left\{\left(x+y\right)^5+\left(x-y\right)^5\right\}$ and hence find the value of $\left\{\left(\sqrt{2}+1\right)^5+\left(\sqrt{2}-1\right)^5\right\}$.

15. Expand $(x+y)^4-(x-y)^4$. Hence find the value of $\left(3+\sqrt{5}\right)^4-\left(3-\sqrt{5}\right)^4$.

16. Find the values of the following using binomial theorem:

$$(i)49^4$$
 $(ii)(1.1)^4$

$$(iii)101^3$$
 $(iv)(0.9)^5$

17. By using binomial theorem find which number is greater $(1.2)^{3000}$ or 600?

18. Prove that $\Sigma_{r=1}{}^n C_r.3^r=4^n$

19. If n is a positive integer then find the number of terms in the expansion of $(x+y-2z)^n$

20. Find the number of terms in the expansion of $(1+3x+3x^2+x^3)^{15}$

Watch Video Solution

21. If $\left(1-x+x^2\right)^n=a_0+a_1x+a_2x^2+.....+a_{2n}x^{2n}, \ \ {
m find}$

the value of $a_0 + a_2 + a_4 + \dots + a_{2n}$.

22. By using binomial theorem prove that $(2^{3n}-7n-1)$ is divisible by 49 where n is a positive integer.

Exercise 8 B

1. Find the 4^{th} term in the expansion of $(x-2y)^{12}$.

2. Find the 7th term in the expansion of $\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$.

3. Find the 15th term in the expansion of $\left(2y-\frac{x}{2}\right)^{18}$

4. Find the 10th term in the binomial expansion of $\left(2x^2+\frac{1}{x}\right)^{12}$.

Watch Video Solution

5. Find the (r+1)th term in the expansion of $\left(\frac{x}{a}-\frac{a}{x}\right)^{2n}$

Watch Video Solution

6. Find the 7th term from the end in the expansion of $\left(x+rac{1}{x}
ight)^{11}$

7. Find the 3rd term the end in the expansion of $\left(2-3x\right)^8$

Watch Video Solution

8. Find the 4th term from the end in the expansion of $\left(\frac{x}{2} - \frac{4}{x} \right)^{15}$

Watch Video Solution

9. Find the middle term in the following expansion:

$$(i)igg(x^2-rac{1}{x^2}igg)^{10}$$

10. In the expansion of $(1+x)^{2n}(n\in N)$, the coefficients of $(p+1)^{th}$ and $(p+3)^{th}$ terms are equal, then

11. If the coefficients of the (2r+4)th, (r+2)th term in the expansion of $(1+x)^{18}$ are equal, then the value of r is.

12. about to only mathematics

13. Find a if 17th and 18th terms in the expansion of $\left(2+a\right)^{50}$ are equal.

14. If the coefficient of 2nd, 3rd and 4th terms in the expansion of $(1+x)^{2n}$ are in A.P. , show that $2n^2-9n+7=0$.

15. If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of $(x + y)^n$ are equal.

16. If 3rd, 4th, 5th terms in the expansion of $(x+a)^n$ be 84, 280 and 560, Find x, a and n.

17. Find a, b and n in the expansion of $(a+b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

18. If a. b, c and d are the coefficients of 2nd, 3rd, 4th and 5th terms respectively in the binomial expansion of $(1+x)^n$, then prove that $\frac{a}{a+b}+\frac{c}{c+d}=2\frac{b}{b+c}$

Water video Solution

19. The coefficient of three consecutive terms in the expansion of $(1+x)^k$. Are in the ratio $1\!:\!7\!:\!42$ find the value of k.

Watch Video Solution

20. Find the 4^{th} term in the expansion of $(x-2y)^{12}$.

21. Find the 6th term in the expansion of $\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$.

22. Find the 15th term in the expansion of $\left(2y-\frac{x}{2}\right)^{18}$

Watch Video Solution

- **23.** (i) Find the 9th term in the expansion of $\left(\frac{x}{a} \frac{2a}{x^2}\right)^{12}$
- (ii) Find the 8th term in the expansion of $\left(2x^2+rac{1}{x}
 ight)^{12}$

24. Find the (r+1)th term in the expansion of $\left(\frac{x}{a}-\frac{a}{x}\right)^{2n}$

25. Find the 7th term from the end in the expansion of

$$\left(x+\frac{1}{x}\right)^{11}$$

Watch Video Solution

26. Find the 3rd term from the end in the expansion of $\left(2-3x\right)^8$

Watch Video Solution

27. Find the 4th term from the end in the expansion of

$$\left(rac{x}{2}-rac{4}{x}
ight)^{15}$$

28. Find the middle term in the following expansion:

$$(i)\left(\frac{x}{a} + \frac{a}{x}\right)^{12}$$

Watch Video Solution

29. In the expansion of $(1+x)^{2n}(n\in N)$, the coefficients of $(p+1)^{th}$ and $(p+3)^{th}$ terms are equal, then

Watch Video Solution

30. If the coefficients of the (2r+4)th, (r+2)th term in the expansion of $(1+x)^{18}$ are equal, then the value of r is.

31. about to only mathematics

Watch Video Solution

32. Find a if 17th and 18th terms in the expansion of $\left(2+a\right)^{50}$ are equal.

Watch Video Solution

33. If the coefficient of 2nd, 3rd and 4th terms in the expansion of $\left(1+x\right)^{2n}$ are in A.P. , show that $2n^2-9n+7=0.$

34. If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of $(x + y)^n$ are equal.

Watch Video Solution

35. If 3rd, 4th, 5th terms in the expansion of $(x+a)^n$ be 84, 280 and 560, Find x, a and n.

Watch Video Solution

36. Find a, b and n in the expansion of $(a+b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

37. If the coefficients of flour consecutive terms in the expansion of $(1+x)^n$ are a,b,c,d respectively then prove that:

$$\frac{a}{a+b} + \frac{C}{c+d} = \frac{2b}{b+c}$$

38. The coefficient of three consecutive terms in the expansion of $\left(1+x\right)^k$. Are in the ratio $1\!:\!7\!:\!42$ find the value of k.

- Watch Video Solution
- **2.** Find the coefficient of x^{10} in the expansion of $\left(1-x^2\right)^{10}$

3. The coefficient of x^{-17} in the expansion of $\left(x^4 - \frac{1}{x^3}\right)^{19}$

1. Find the coefficient of x^9 in the expansion of $\left(x^2 - \frac{1}{3x}\right)^9$.

Watch Video Solution

Watch Video Solution

is

4. Find the coefficient of x^{40} in the expansion of $\left(1+2x+x^2\right)^{27}$.

5. If 'n' is a positive integer then prove that the coefficient fo x^m in the expansion of $\left(x^2+\frac{1}{x}\right)^{2n}$ is :

6. Find the term independent of x (constant term) in the following expansion:

$$(i)igg(x^2-rac{1}{3x}igg)^9 \qquad \qquad (ii)igg(x-rac{1}{x}igg)^{10}$$

7. Prove that the term independent of x in the expansin of

$$\left(x+rac{1}{x}
ight)^{2n}israc{1.\ 3.\ 5(2n-1)}{n!}.\ 2^{n}\cdot$$

- **8.** Find the coefficient of $a^5b^7 \in \left(a-2b\right)^{12}$
 - **Watch Video Solution**

- **9.** Find the coefficient of x^2 . y^7 in the expansion of $\left(x+2y\right)^9$
 - **Natch Video Solution**

10. Prove that the ratio of the coefficient of x^{10} in $\left(1-x^2\right)^{10}$ & the term independent of x in $\left(x-\frac{2}{x}\right)^{10}$ is 1:32

11. Prove that he coefficient of x^n in the expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$

12. Find a positive value of m for which the coefficient of x^2 in the expansion of $(1+x)^m$ is 6.

13. The sum of the coefficients of
$$x^{32}$$
 and x^{-17} in $\left(x^4-rac{1}{x^3}
ight)^{15}$ is

14. If the coefficient of x^7 in $\left[ax^2+\left(\frac{1}{b}x\right)\right]^{11}$ equals the coefficient of x^{-7} in $\left[ax-\left(\frac{1}{bx^2}\right)\right]^{11}$ then a and b satisfy the relation

15. about to only mathematics

16. Find the coefficient of x^{10} in the expansion of $\left(1-x^2\right)^{10}$

17. about to only mathematics

18. Find the coefficient of x^{40} in the expansion of $\left(1+2x+x^2\right)^{27}$.

19. If 'n' is a positive integer then prove that the coefficient fo

$$x^m$$
 in the expansion of $\left(x^2+rac{1}{x}
ight)^{2n}$ is :

- **20.** Find the term independent of x in $\left(\frac{3x^2}{2} \frac{1}{3x}\right)^9$
 - Watch Video Solution

21. Prove that the term independent of \boldsymbol{x} in the expansin of

$$\left(x+rac{1}{x}
ight)^{2n} israc{1.\ 3.\ 5(2n-1)}{n!}.\ 2^{n}.$$

Watch Video Solution

22. Find the coefficient of $a^5b^7 \in (a-2b)^{12}$

Watch Video Solution

23. Find the coefficient of x^2 . y^7 in the expansion of $\left(x+2y\right)^9$

24. Prove that the ratio of the coefficient of x^{10} in $\left(1-x^2\right)^{10}$

& the term independent of x in $\left(x-\frac{2}{x}\right)^{10}$ is 1:32

Watch Video Solution

25. The coefficient of x^n in the expansion of $(1+x)^{2n}$ and $(1+x)^{2n-1}$ are in the ratio

26. Find a positive value of m for which the coefficient of x^2 in the expansion $\left(1+x\right)^m$ is 6

27. Find the coefficients of $x^{32} and x^{-7}$ in the expansion of

$$\left(x^4 - \frac{1}{x^3}\right)^{15}.$$

Watch Video Solution

28. Find the coefficients of x^7 in $\left(ax^2+rac{1}{bx}
ight)^{11}andx^{-7}\in \left(arac{x^{-1}}{bx^2}
ight)^{11}$ and find the relation

between a a n d b so that coefficients are equal.

Watch Video Solution

Exercise 8 D

1. Evaluate the following:

$$(i)1+.^{20}C_1+^{20}C_2+^{20}C_3+....+^{20}C_{19}+^{20}C_{20}$$

$$(ii)^{10}C_1 + ^{10}C_2 + ^{10}C_3 + \dots + ^{10}C_9$$

$$(iii)^{25}C_1 + ^{25}C_3 + ^{25}C_5 + + ^{25}C_{25}$$

$$(iv)^{18}C_2 + ^{18}C_4 + ^{18}C_4 + ^{18}C_6 + \dots + ^{18}C_{18}$$

Watch Video Solution

2. If $(1+x)^n=C_0+C_1$. $x+C_2$. $x^2+{\hat{\mathfrak a}} {\mathfrak C}_{{}_1}^{{}_1}$. $+C_n$. x^n . then prove that

$$(i)C_0 + 2C_1 + 3C_2 + {\hat{\mathfrak{a}}} {f extsf{\ell}}_{\scriptscriptstyle f I}^{\scriptscriptstyle f I} + (n-1)C_n = (n+2).2^{n-1}$$

$$(ii)C_0 + 3C_1 + 5C_2 + ... + (2n+1)C_n = (n+1).2^n$$

3. Prove that:

$$C_1 \cdot ^2 C_2 + ^3 C_2 + ^4 C_2 + \hat{\mathfrak{a}} \in C_1 \cdot \cdot \cdot +^{n+1} C_2 = rac{1}{6} n(n+1)(n+2)$$

Watch Video Solution

4. Evaluate the following:

$$(i)1 + .^{20} C_1 + ^{20} C_2 + ^{20} C_3 + + ^{20} C_{19} + ^{20} C_{20}$$

$$(ii)^{10}C_1 + ^{10}C_2 + ^{10}C_3 + \dots + ^{10}C_9$$

$$(iii)^{25}C_1 +^{25}C_3 +^{25}C_5 + \dots +^{25}C_{25}$$

$$(iv)^{18}C_2 + ^{18}C_4 + ^{18}C_4 + ^{18}C_6 + \dots + ^{18}C_{18}$$

Watch Video Solution

5. If $(1+x)^n=C_0+C_1x+C_2x^2+\ldots+C_nx^n$, prove that

$$C_0 + 2C_1 + 3C_2 + \ldots + (n+1)C_n = (n+2)2^{n-1}$$
.

Watch Video Solution

6. Prove that:

$$C_1 \cdot ^2 C_2 + ^3 C_2 + ^4 C_2 + \ldots \cdot +^{n+1} C_2 = rac{1}{6} n(n+1)(n+2)$$

Watch Video Solution

Exercise 8 E

- **1.** No. of terms in the expansion of $\left(1+3x+3x^2+x^3\right)^{10}$ is:
 - A. 31
 - B. 32

C. 10

D. 11

Answer: A

Watch Video Solution

2. Find $(x+1)^6+(x-1)^6.$ Hence or otherwise evaluate $\left(\sqrt{2}+1\right)^6+\left(\sqrt{2}-1\right)^6.$

A. 184

B. 192

C. 198

D. 202

Answer: C

Watch Video Solution

3. 15th term in the expansion of $\left(\sqrt{x}-\sqrt{y}^{17}
ight)$ is :

A.
$$860x^{3/2}y^7$$

B.
$$680x^7y^{3/2}$$

C.
$$680x^{3/2}y^7$$

D.
$$860x^3y^{7/2}$$

Answer: C

4. If the coefficients of the $(n+1)^{th}$ term and the $(n+3)^{th}$ term in the expansion of $(1+x)^{20}$ are equal , then the value of n is 10 b. 8 c. 9 d. none of these

- A.P
- B.P+1
- $\mathsf{C}.P+2$
- $\mathsf{D}.\,P+3$

Answer: B

Watch Video Solution

5. Find a if 17th and 18th terms in the expansion of $\left(2+a\right)^{50}$ are equal.

A.
$$1/3$$

B. 1/2

C. 1

D. None of these

Answer: C

Watch Video Solution

6. Find the coefficient of x^{-25} in the expansion of $\left(\frac{x^2}{2}-\frac{3}{x^3}\right)^{15}$

A.
$$rac{-1365}{16} imes 3^{11}$$

B.
$$\dfrac{1365}{16} imes 3^{11}$$

C.
$$rac{-16}{1365} imes 3^{11}$$

D. None of these

Answer: A

Watch Video Solution

- **7.** The reamainder left out when $8^{2n}-(62)^{2n+1}$ is divided by
- 9 is
 - A. 0
 - B. 2
 - C. 4
 - D. none of these

Answer: B

valcii video Solution

8. No. of terms in the expansion of $\left(1+2x\right)^9+\left(1-2x\right)^9$ is :

A. 10

B. 9

C. 7

D. 5

Answer: D

Watch Video Solution

9. Find the middle term in the expansion of : $\left(x-\frac{1}{x}\right)^{10}$

A. 126

- B. -126
- C. -252
- D. 252

Answer: C

Watch Video Solution

10. if the coefficient of (2r+1)th term and (r+2)th term in the expansion of $(1+x)^{43}$ are equal then r=?

- A. 14
- B. 30
- C. 41
- D. 42

Answer: A

Watch Video Solution

11. Find the middle term in the expansion of : $\left(1+3x+3x^2+x^3\right)^{2n}$

- A. 31
- B. 32
- C. 10
- D. 11

Answer: A

12. Find
$$(x+1)^6+(x-1)^6$$
 hence, or otherwise evaluate $(\sqrt{2}+1)^6+(\sqrt{2}-1)^6$

- A. 184
- B. 192
- C. 198
- D. 202

Answer: C

Watch Video Solution

13. 15th term in the expansion of $\left(\sqrt{2}-\sqrt{y}
ight)^{17}$ is :

A. $87040y^7$

B.
$$-87040y^{3/2}$$

C.
$$680y^7$$

D.
$$-860y^{7/2}$$

Answer: B

Watch Video Solution

14. If the coefficients of the $(n+1)^{th}$ term and the $(n+3)^{th}$ term in the expansion of $(1+x)^{20}$ are equal , then the value of n is 10 b. 8 c. 9 d. none of these

A. P

B.P+1

 $\operatorname{C.}P+2$

 $\mathsf{D}.\,P+3$

Answer: B

Watch Video Solution

15. Find a if 17th and 18th terms in the expansion of $\left(2+a\right)^{50}$ are equal.

A. 1/3

B. 1/2

C. 1

D. None of these

Answer: C

valcii video Solution

16. Find the coefficient of x^{-25} in the expansion of

$$\left(\frac{x^2}{2}-\frac{3}{x^3}\right)^{15}$$

A.
$$\dfrac{-\,1365}{16} imes3^{11}$$

B.
$$\dfrac{1365}{16} imes3^{11}$$

C.
$$\dfrac{-16}{1365} imes 3^{11}$$

D. None of these

Answer: A

17. The reamainder left out when $8^{2n}-\left(62\right)^{2n+1}$ is divided by 9 is

A. 0

B. 2

C. 4

D. none of these

Answer: B

Watch Video Solution

18. No. of terms in the expansion of $\left(1+2x\right)^9+\left(1-2x\right)^9$ is

- A. 10
- B. 9
- C. 7
 - D. 5

Answer: D

Watch Video Solution

19. Find the middle term in the expansion of : $\left(x-rac{1}{x}
ight)^{10}$

- A. 126

 - B. -126
 - C. -252
 - D. 252

Answer: C

Watch Video Solution

20. If the coefficient of (2r+1) th and (r+2) th terms in the expansion of $(1+x)^{43}$ are equal, then the value of $r(r \neq 1)$ is

- A. 14
- B. 30
- C. 41
- D. 42

Answer: A

Exercise 8 F

1. Find the coefficient of x^4 in the expansion of $\left(2-x+3x^2\right)^6$.

$$A. - 5051$$

$$C. - 4631$$

D. none of these

Answer: A

2. If the sum of the coefficients in the expansion of $(a+b)^n$ is 4096, then the greatest coefficient in the expansion is a. 924 b. 792 c. 1594 d. none of these

- A. 792
- $\mathsf{B.}\,924$
- **C.** 1048
- D. 2096

Answer: B

Watch Video Solution

3. If the second, third and fourth terms in the expansion of $(x+y)^n$ be 135, 30 and 10/3 respectively, then

- A. 5
- B. 6
- C. 7
- D. 9

Answer: A

- **4.** Find the coefficient of x^4 in the expansion of $(1+x+x^2+x^3)^{11}$
 - A. 900
 - B. 909
 - C. 990

Answer: C

Watch Video Solution

5. If a. b, c and d are the coefficients of 2nd, 3rd, 4th and 5th terms respectively in the binomial expansion of $(1+x)^n$, then prove that $\frac{a}{a+b}+\frac{c}{c+d}=2\frac{b}{b+c}$

A.
$$\frac{b}{b+c}$$

B.
$$\frac{b}{2(b+c)}$$

C.
$$\frac{2b}{b+c}$$

D.
$$\frac{2c}{b+c}$$

Answer: C

6. If the coefficients of
$$x^7$$
 and x^8 in the expansion of

$$\left[2+rac{x}{3}
ight]^n$$
 are equal, then the value of n is : (A) 15 (B) 45 (C)

A. 15

B. 45

C. 55

D. 60

Answer: C

7. If A and B denote the coefficients of \boldsymbol{x}^n in the

binomial expansions of $(1+x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then

$$A. A = B$$

$$\mathsf{B.}\,2A=B$$

$$\mathsf{C}.\,A=2B$$

D. None of these

Answer: C

8. Find the greatest term in the expansion of

$$\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}.$$

A.
$$\frac{25840}{9}$$

B.
$$\frac{24840}{9}$$

c.
$$\frac{26840}{9}$$

D. None of these

Answer: A

Watch Video Solution

9. If the coefficient of the rth, (r+1)th and (r+2)th

terms in the expansion of $\left(1+x\right)^n$ are in A.P., prove that

$$n^2 - n(4r+1) + 4r^2 - 2 = 0.$$

A.
$$n^2 - n(4r+1) + 4r^2 - 2 = 0$$

B.
$$n^2 + n(4r+1) + 4r^2 - 2 = 0$$

C.
$$n^2 + n(4r+1) + 4r^2 + 2 = 0$$

D.
$$n^2 + n(4r+1) + 4r^2 + 2 = 0$$

Answer: A

Watch Video Solution

10. if the coefficients of x^5 and x^{15} in the expansion of $\left(x^2 + \frac{a}{x^3}\right)^{10}$ are equal then then the positive value of 'a' is:

A.
$$2\sqrt{3}$$

B. 1

C.
$$\frac{1}{\sqrt{3}}$$

Answer: D

Watch Video Solution

11. Find the coefficient of x^4 in the expansion of $\left(2-x+3x^2\right)^6$.

$$A. - 5051$$

B. 4632

C. - 4631

D. none of these

Answer: A

Watch Video Solution

12. If the sum of the coefficients in the expansion of $(a+b)^n$ is 4096, then the greatest coefficient in the expansion is a. 924 b. 792 c. 1594 d. none of these

- A. 792
- B.924
- C.1048
- D. 2096

Answer: B

13. If the second, third and fourth terms in the expansion of $\left(x+y\right)^n$ be 135, 30 and 10/3 respectively, then

- A. 5
- B. 6
- C. 7
- D. 9

Answer: A

Watch Video Solution

14. Find the coefficient of x^4 in the expansion of $\left(1+x+x^2+x^3\right)^{11}$.

- A. 900
- B. 909
- C. 990
- D. 999

Answer: C

Watch Video Solution

15. if a,b,c and d are the coefficient of four consecutive terms in the expansion of $(1+x)^n$ then $\frac{a}{a+b} + \frac{c}{c+d} = ?$

A.
$$\frac{b}{b+c}$$

B.
$$\frac{b}{2(b+c)}$$

C.
$$\frac{2b}{b+c}$$

D.
$$\dfrac{2c}{b+c}$$

Answer: C

Watch Video Solution

- **16.** If the coefficients of x^7 and x^8 in the expansion of $\left(2+\frac{x}{3}\right)^n$ are equal then n is
 - 3 /
 - **A.** 15
 - B. 45
 - C. 55
 - D. 60

Answer: C

rater video Solution

17. If A and B are the coefficients of x^n in the expansion $(1+x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then

A.
$$A=B$$

$$B.2A = B$$

$$\mathsf{C}.\,A=2B$$

D. None of these

Answer: C

18. Find the greatest term in the expansion of

$$\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}.$$

- A. $\frac{25840}{9}$
- B. $\frac{24840}{9}$
- c. $\frac{26840}{9}$

D. None of these

Answer: A

Watch Video Solution

19. If the coefficients of the rth, (r+1)th, (r+2)th terms is the expansion of $(1+x)^{14}$ are in A.P, then the largest value

of r is.

A.
$$n^2 - n(4r+1) + 4r^2 - 2 = 0$$

B.
$$n^2 + n(4r+1) + 4r^2 - 2 = 0$$

C.
$$n^2 + n(4r+1) + 4r^2 + 2 = 0$$

D.
$$n^2 + n(4r+1) + 4r^2 + 2 = 0$$

Answer: A

Watch Video Solution

20. if the coefficients of x^5 and x^{15} in the expansion of

$$\left(x^2+rac{a}{x^3}
ight)^{10}$$
 are equal then then the positive value of 'a' is:

A. $2\sqrt{3}$

B. 1

Watch Video Solution

Answer: D

Exericse 8 1

1. Expand of the expression : $(1-2x)^5$

3. Expand of the expression : $(2x-3)^6$

Watch Video Solution

4. Expand of the expression : $\left(\frac{x}{3} + \frac{1}{x}\right)^5$

Watch Video Solution

5. Expand $\left(x+\frac{1}{x}\right)^6$. $(x\neq 0)$

Watch Video Solution

6. Using binomial theorem, evaluate : $\left(96\right)^3$

7. Using binomial theorem, evaluate : $\left(102\right)^5$

8. Using binomial theorem, evaluate : $(101)^4$

9. Using binomial theorem, evaluate : $(99)^5$

10. Using binomial theorem, indicate which number is larger $(1.\ 1)^{10000}$ or 1000.

Watch Video Solution

11. Find $(a+b)^4-(a-b)^4$. Hence evaluate $\left(\sqrt{3}+\sqrt{2}\right)^4-\left(\sqrt{3}-\sqrt{2}\right)^4$

12. Find $(x+1)^6+(x-1)^6$. Hence or otherwise evaluate $\left(\sqrt{2}+1\right)^6+\left(\sqrt{2}-1\right)^6$.

13. Show that $9^{n+1} - 8n - 9$ is divisible by 64, where n is a positive integer.

Watch Video Solution

14. Prove that $\sum_{r=0}^n 3^r$ $^nC_r = 4^n$.

15. Expand of the expression $: (1-2x)^5$

16. Expand of the expression : $\left(\frac{2}{x} - \frac{x}{2}\right)^5$

17. Expand of the expression :
$$\left(2x-3\right)^6$$

18. Expand of the expression : $\left(\frac{x}{3} + \frac{1}{x}\right)^5$

19. Expand
$$\left(x+\frac{1}{x}\right)^6$$
. $(x\neq 0)$

20. Using binomial theorem, evaluate : $(96)^3$ **Watch Video Solution 21.** Using binomial theorem, evaluate : $(102)^5$ **Watch Video Solution 22.** Using binomial theorem, evaluate : $\left(101\right)^4$ **Watch Video Solution 23.** Using binomial theorem, evaluate : $(99)^5$

24. Using binomial theorem, indicate which number is larger $(1.\ 1)^{10000}$ or 1000.

Watch Video Solution

25. Find $(a+b)^4-(a-b)^4$. Hence evaluate $\left(\sqrt{3}+\sqrt{2}\right)^4-\left(\sqrt{3}-\sqrt{2}\right)^4$

Watch Video Solution

26. Find $(x+1)^6+(x-1)^6$. Hence or otherwise evaluate $\left(\sqrt{2}+1\right)^6+\left(\sqrt{2}-1\right)^6$.

27. Show that $9^{n+1} - 8n - 9$ is divisible by 64, where n is a positive integer.

Watch Video Solution

28. Prove that $\Sigma_{r=0}^n 3^{rn} C_r = 4^n$

Watch Video Solution

Exericse 8 2

1. Find the coefficient of $x^5 \in (x+3)^8$

2. Find the coefficient of $a^5b^7 \in (a-2b)^{12}$

3. Write the general term in the expansion of $\left(x^2-y\right)^6$

- **4.** Write the general term in the expansion of $\left(x^2-yx\right)^{12},\,x
 eq0$
 - Watch Video Solution

5. Find the 4^{th} term in the expansion of $(x-2y)^{12}$.

Water video Solution

6. Find 13th term in the expansion of $\left(9x - \frac{1}{3x}\right)^{18}, \ x \neq 0.$

7. Find the middle terms in the expansion of $\left(3 - \frac{x^3}{6}\right)^4$.

8. Find the middle term in the expansion of : $\left(\frac{x}{3} + 9y\right)^{10}$

9. In the binomial expansion of $(1+a)^{m+n}$, prove that the coefficient of $a^m and \ a^n$ are equal.

10. The coefficients of the $(r-1)^{th}, r^{th}$ and $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio $1\!:\!3\!:\!5$.Find n and r.

11. The coefficient of x^n in the expansion of $(1+x)^{2n}$ and $(1+x)^{2n-1}$ are in the ratio

12. Find a positive value of m for which the coefficient of x^2 in the expansion of $\left(1+x\right)^m$, is 6.

13. Find the coefficient of $x^5 \in (x+3)^8$

14. Find the coefficient of $a^5b^7 \in (a-2b)^{12}$

15. Write the general term in the expansion of $\left(x^2-y\right)^6$

16. Write the general term in the expansion of
$$\left(x^2-yx
ight)^{12}, \, x
eq 0$$

17. Find the 4^{th} term in the expansion of $(x-2y)^{12}$.

18. Find the 13^{th} term in the expansion of $\left(9x-rac{1}{3\sqrt{x}}
ight)^{18},\,x
eq0$

19. Find the middle term in the expansion of $\left(3-\frac{x^3}{6}\right)^{\alpha}$

20. Find the middle term in the expansion of : $\left(\frac{x}{3} + 9y\right)^{10}$

21. In the expansion of $(1+a)^{m+n}$,prove that coefficients of a^m and a^n are equal.

22. The coefficients of the $(r-1)^{th}, r^{th}$ and $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio $1\!:\!3\!:\!5$.Find n and r.

23. prove that the coefficient of x^n in the expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$

24. Find a positive value of m for which the coefficient of x^2 in the expansion of $\left(1+x\right)^m$ is 6.

Watch video Solution

Miscellaneous Exericse

1. Find a, b and n in the expansion of $(a + b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

Watch Video Solution

2. If the coefficients of $x^2 and \ x^3$ in the expansion o $(3+ax)^9$ are the same, then the value of a is $-\frac{7}{9}$ b. $-\frac{9}{7}$ c.

$$\frac{7}{9}$$
 d. $\frac{9}{7}$

3. Find the coefficient of a^4 in the product $\left(1+a\right)^4 \left(2-a\right)^5$ using binomial theorem.

4. If a and b are distinct integers, prove that a-b is a factor of a^n-b^n , whenever n is a positive integer.

5. Evaluate $\left(\sqrt{3}+\sqrt{2}\right)^6-\left(\sqrt{3}-\sqrt{2}\right)^6$

6. Find the value of $\left(a^2+\sqrt{a^2-1}\right)^4+\left(a^2-\sqrt{a^2-1}\right)^4$.

7. Find an approximation of $(0.99)^5$ using the first three terms of its expansion.

8. Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(24+\frac{1}{34}\right)^n$ is $\sqrt{6}$: 1 .

9. Using binomial theorem expand $\left(1+\frac{x}{2}-\frac{2}{x}\right)^4,\ x\neq 0.$

10. Find the expansion of $\left(3x^2-2ax+3a^2\right)^3$ using binomial theorem.

11. Find a, b and n in the expansion of $(a+b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

12. If the coefficients of $x^2 and \ x^3$ in the expansion o $(3+ax)^9$ are the same, then the value of a is $-\frac{7}{9}$ b. $-\frac{9}{7}$ c.

Natch Video Solution

13. Find the coefficient of x^5 in the expansion of $(1+2x)^6(1-x)^7$.

14. If a and b are distinct integers, prove that a-b is a factor of a^n-b^n , whenever n is a positive integer.

15. Evaluate $\left(\sqrt{3}+\sqrt{2}\right)^6-\left(\sqrt{3}-\sqrt{2}\right)^6$

16. Find the value of $\left(a^2+\sqrt{a^2-1}\right)^4+\left(a^2-\sqrt{a^2-1}\right)^4$.

17. Find an approximation of $(0.99)^5$ using the first three terms of its expansion.

18. Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(24+\frac{1}{34}\right)^n$ is $\sqrt{6}$: 1 .

Watch Video Solution

19. Expand using Binomial Theorem $\left(1+rac{x}{2}-rac{2}{x}
ight)^4, x
eq 0.$

20. Find the expansion of $\left(3x^2-2ax+3a^2\right)^3$ using binomial theorem.

