©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - NAGEEN PRAKASHAN ENGLISH

PRINCIPLE OF MATHEMATICAL INDUCTION

Examples

1. By the principle of mathematical induction, prove that, for all integers $\mathrm{n} \geq 1$,
$1+2+3+\ldots+n=\frac{n(n+1)}{2}$

- Watch Video Solution

2. Prove by the principle of mathematical induction that for all $n \in N: 1^{2}+2^{2}+3^{2}++n^{2}=\frac{1}{6} n(n+1)(2 n+1)$

- Watch Video Solution

3. Prove the following by the principle of mathematical induction:

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}++\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

Watch Video Solution
4. If $n \in N$, then $n\left(n^{2}-1\right)$ is divisible by

- Watch Video Solution

1. By the principle of mathematical induction prove that for all natural number ' n ' the following statement are true :
$(a) 2+4+6+\ldots \ldots .+2 n=n(n+1)$
(b) $1+4+7+\ldots \ldots+(3 n-2)=\frac{1}{2} n(3 n-1)$
(C) $1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots .+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}$

D Watch Video Solution

2. By the principle of mathematical induction prove that for every $n \in N$, the following statements are true:

$$
1+5+9+\ldots .+(4 n-3)=2 n^{2}-n
$$

- Watch Video Solution

3. By the principle of mathematical induction prove that for all natural numbers ' n ' the following statements are true,
$2+2^{2}+2^{3}+\hat{a} €_{1}^{\prime} . .+2^{n}=2\left(2^{n}-1\right)$

- Watch Video Solution

4. By the principle of mathematical induction prove that the following statements are true for all natural numbers ' n '
(a) $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots \ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$
(b) $\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots \ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}$

- Watch Video Solution

5. By the principle of mathematical induction prove that the following statement are true for all natural numbers ' n ' $n(n+1)(n+5)$ is a multiple of 3.
6. Prove the following by the principle of mathematical induction:
7. $7^{n}+3.5^{n}-5$ is divisible 25 for all $n \in N$.

- Watch Video Solution

7. Prove by induction that the sum $S_{n}=n^{3}+3 n^{2}+5 n+3$ is divisible by 3 for all $n \in N$.

- Watch Video Solution

8. if $a^{1}=a, a^{r+1}=a^{r}$. a prove that:
$(a b)^{n}=a^{n} b^{n}$, Where $n \in N$

Watch Video Solution
9. By the principle of mathematical induction prove that $3^{2^{n}}-1$, is divisible by 2^{n+2}

- Watch Video Solution

10. Prove the following by the principle of mathematical induction:
$7^{2 n}+2^{3 n-3} \cdot 3^{n-1}$ is divisible 25 for all $n \in N$.

- Watch Video Solution

11. Prove the following by the principle of mathematical induction:
$7+77+777++777++\ddot{n}-$ digits $7=\frac{7}{81}\left(10^{n+1}-9 n-10\right)$ for all $n \in N B$.

- Watch Video Solution

12. Prove the following by using the principle of mathematical induction for all $n \in N: 1+2+3+\dot{+} n<\frac{1}{8}(2 n+1)^{2}$.

- Watch Video Solution

13. Using the principle of mathematical induction ,prove that $(1+x)^{n} \geq(1+n x)$ for all $n \in N$, where $\mathrm{x}>-1$.

D Watch Video Solution

14. Using binomial theorem, prove that $2^{3 n}-7 n-1$ is divisible by 49 , where $n \in N$.

- Watch Video Solution

$15.1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+n}=\frac{2 n}{n+1}$
16. Using the principle of mathematical induction, prove that :

1. $2.3+2.3 .4++n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$ for all $n \in N$.

D Watch Video Solution

17. Using the principle of mathematical induction, prove that :
18. $2.3+2.3 .4++n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$ for all $n \in N$.

D Watch Video Solution

18. $1.3+2.3^{2}+3.3^{3}+\ldots \ldots \ldots \ldots .+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$
19. Prove by

PMI
that
$1.2+2.3+3.4+\ldots+n(n+1)=\frac{(n)(n+1)(n+2)}{3}, \forall n \in N$

- Watch Video Solution

20.1.3 $+3.5+5.7+\ldots \ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$

(D) Watch Video Solution

21. Prove the following by the principle of mathematical induction:

$$
\text { 1. } 2+2.2^{2}+3.2^{3}++n .2^{n}=(n-1) 2^{n+1}+2
$$

- Watch Video Solution

22. Prove the following by the principle of mathematical induction:

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}++\frac{1}{2^{n}}=1-\frac{1}{2^{n}}
$$

23. Prove the following by the principle of mathematical induction:

$$
\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}++\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{6 n+4}
$$

D Watch Video Solution

24. Using the principle of mathematical induction prove that $\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}++\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$ for all $n \in N$

- Watch Video Solution

25. Prove the following by using the principle of mathematical
induction for all $n \in N: a+a r+a r^{2}+\dot{+} a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$
26. Prove the following by using the principle of mathematical induction for all $n \in N$:
$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) 1+\frac{(2 n+1)}{n^{2}}=(n+1)^{2}$

- Watch Video Solution

27. Prove the following by using the principle of mathematical induction for all $n \in N:$
$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) 1+\frac{1}{n}=(n+1)$

(D) Watch Video Solution

28. Prove by using the principle of mathemtical induction:
$1^{3}+3^{3}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
29. Prove the following by the principle of mathematical induction:
$\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}$

Watch Video Solution

30. Prove the following by the principle of mathematical induction:
$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$

- Watch Video Solution

31. Prove the following by using the principle of mathematical induction for all $n \in N: 1+2+3+\dot{+} n<\frac{1}{8}(2 n+1)^{2}$.
32. $n(n+1)(n+5)$ is a multiple 3 .

- Watch Video Solution

33. Prove by the principle of induction that for all $n N,\left(10^{2 n-1}+1\right)$ is divisible by 11 .

- Watch Video Solution

34. Prove the following by the principle of mathematical induction: $x^{2 n-1}+y^{2 n-1}$ is divisible by $x+y$ for all $n \in N$.

- Watch Video Solution

35. Prove the following by using the principle of mathematical induction for all $n \in N: 3^{2 n+2}-8 n-9$ is divisible by 8 .
36. Prove the following by using the principle of mathematical induction for all $n \in N: 41^{n}-14^{n}$ is a multiple of 27 .

D Watch Video Solution

37. Prove the following by using the principle of mathematical induction for all $n \in N:(2 n+7)<(n+3)^{2}$.

- Watch Video Solution

Exercise 41

1. Using principle of mathematical induction, prove that
$1+3+3^{2}+\ldots 3^{n-1}=\frac{3^{n}-1}{2}$
