

India's Number 1 Education App

MATHS

BOOKS - NCERT MATHS (HINDI)

गणितीय आगमन का सिद्धांत

उदाहरण

1.
$$1+3+5+\ldots + (2n-1)=n^2$$

2. सभी प्राकृत संख्याओं $n \geq 2$ के लिए सिद्ध कीजिए $\sum_{t=1}^{n-1} t(t+1) = rac{n(n-1)(n+1)}{3}$

3. सभी प्राकृत संख्याओं $n\geq 2$ के लिए ,

$$igg(1-rac{1}{2^2}igg)igg(1-rac{1}{3^2}igg)-igg(1-rac{1}{n^2}igg)=rac{n+1}{2n}$$

4. प्रत्येक प्राकृत संख्या n के लिए 4^n-1 संख्या 3 से भाज्य है |

5. सभी प्राकृत संख्याओं $n \geq 3$ के लिए $2n+1 < 2^n$.

- **6.** किसी अनुक्रम $a_1 a_2, a_3...$ को इस प्रकार परिभाषित कीजिए कि
- $a_1 = 2, a_n = 5 a_{n-1}$ जो सभी प्राकृत संख्याओं $n \geq 2$ के लिए,
- (i) अनुक्रम के प्रथम चार पद (terms) लिखिए।
- (ii) गणितीय आगमन के सिद्धांत का प्रयोग करके सिद्ध कीजिए कि सभी प्राकृत संख्याओं के लिए, अनुक्रम के पद, सूत्र $a_n=2.5^{n-1}$ को संतुष्ट करते हैं।

और a_2 के लिए, $c(a_1+a_2)=ca_1+ca_2$ इस वितरण नियम तथा गणितीय आगमन का प्रयोग करके, सिद्ध कीजिए कि, सभी प्राकृत संख्याओं $n\geq 2$, के लिए, यदि $c,a_1,a_2,\ldots\ldots,a_n$ वास्तविक संख्याएँ ξ , तो

 $c(a_1 + a_2 + \dots + a_n) = ca_1 + ca_2 + \dots + ca_n$

7. बीजगणित (algebra) के वितरण नियम द्वारा सभी वास्तविक संख्याओं c, a_1

8. आगमन विधि द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्याओं n के लिए,

$$\sin lpha + \sin (lpha + eta) + \sin (lpha + 2eta) + + \sin (lpha + (n-1)eta)$$

$$=rac{\sin\Bigl(lpha+rac{n-1}{2}\Bigr) \sin\Bigl(rac{neta}{2}\Bigr)}{\sin\Bigl(rac{eta}{2}\Bigr)}$$

9. गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए,

$$1 imes 1! + 2 imes 2! + 3 imes 3! + + n imes n! = (n+1)! - 1$$

10. गणितीय आगमन के सिद्धांत द्वारा सिद्ध कीजिए कि श्रेणी (series), $1^2+2 imes 2^2+3^2+2 imes 4^2+5^2+2 imes 6^2.....$ के n पदों का

योगफल $S_n=\left\{egin{array}{ll} rac{n\left(n+1
ight)^2}{2} & ext{if n is even} \ rac{n^2\left(n+1
ight)}{2} & ext{if n is odd} \end{array}
ight.$ निम्नलिखित प्रकार है,

- **11.** मान लीजिए कि P(n) : '' $2^n < (1 \times 2 \times 3 \times ... \times n)$ '', तो न्युनतम धन पूर्णांक, जिसके लिए P (1) सत्य है,
 - A. 1
 - B. 2
 - D. 4 है|

C. 3

Answer: D

12. एक विद्यार्थी को किसी कथन P(n) को गणितीय आगमन द्वारा सिद्ध करने के लिए कहा गया। उसने सिद्ध किया कि, सभी $k>5\in N$ के लिए P(k+1) सत्य है, जब कभी P(K) सत्य है और यह कि P(5) भी सत्य है। इसके आधार पर उसने निष्कर्ष निकाला कि P(n) सत्य है,

- A. सभी $n \in N$ के लिए
- B. सभी n>5 के लिए
- C. सभी $n \geq 5$ के लिए
- D. सभी n < 5 के लिए

Answer: C

वीडियो उत्तर देखें

13. यदि P(n) : ' ' $2.4^{2n+1}+3^{3n+1}$ सभी $n\in N$ ' ' के लिए, λ से भाज्य है, सत्य है, तो λ का मान $_$ है।

14. यदि P(n) : ' ' $n \in N$ के लिए $49^n + 16^n + k$ संख्या 64 से भाज्य है "

सत्य है , तो k क का न्यूनतम ऋण पूर्णांक मान _____ है |

15. बताइए कि गणितीय आगमन द्वारा कथन

$$P(n)\!:\!1^2+2^2+.....+n^2=rac{n(n+1)(2n+1)}{6}$$
 की निम्नलिखित

उपपत्ति है सत्य है या असत्य है |

1. एक ऐसे कथन P(n) का उदाहरण दीजिए, जो सभी $n \geq 4$ के लिए सत्य है किंतु P(1), P(2) तथा P(3) सत्य नहीं है। अपने उत्तर का औचित्य भी बताइए।

2. किसी ऐसे कथन P(n) का उदाहरण दीजिए जो n के सभी मानों के लिए सत्य है। अपने उत्तर का औचित्य बताइए।

3. प्रत्येक प्राकृत संख्या n के लिए, 4^n-1 संख्या 3 से भाज्य है।

4. सभी प्राकृत संख्या $\mathbf n$ के लिए, $2^{3n}-1$, संख्या $\mathbf 7$ से भाज्य है।

5. सभी प्राकृत संख्या n के लिए, $n^3 - 7n + 3$ संख्या 3 भाज्य है।

6. सभी प्राकृत संख्या n के लिए $3^{2n}-1$ संख्या 8 से भाज्य है।

7. किसी प्राकृत संख्या ${\sf n}$ के लिए 7^n-2^n संख्या ${\sf 5}$ से भाज्य है।

8. किसी प्राकृत संख्या n के लिए, $x^n-y^n, x-y$ से भाज्य है, जहाँ x तथाy पूर्णाक है और $x \neq y$.

9. प्रत्येक प्राकृत संख्या $n \geq 2$ के लिए, $n^3 - n$, संख्या 6 से भाज्य है।

10. प्रत्येक प्राकृत संख्या n के लिए, $nig(n^2+5ig)$, संख्या 6 से भाज्य है।

11. सभी प्राकृत संख्या $n \geq 5$ के लिए, $n^2 < 2^n$.

12. सभी प्राकृत संख्या ${\sf n}$ के लिए, 2n < (n+2)!

वीडियो उत्तर देखें

13. सभी प्राकृत संख्या
$$n\geq 2$$
 के लिए,

$$\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{n}}$$

14. सभी प्राकृत संख्या n के लिए,
$$2+4+6+...+2n=n^2+n$$

15. सभी प्राकृत संख्या n के लिए, $1+2+2^2+.....+2^n=2^{n+1}-1$

16. सभी प्राकृत संख्या n के लिए, 1+5+9+...+(4n-3)=n(2n-1)

4 3 प्रश्नावली विस्तृत उत्तर वाले प्रश्न L A

1. सभी प्राकृत संख्या k>2 के लिए, एक अनुक्रम $a_1,a_2,a_3...,a_1=3$ तथा $a_k=7a_{k-1}$ द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए $a_n=3.7^{n-1}$

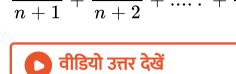
2. सभी प्राकृत संख्या के लिए एक अनुक्रम $b_0, b_1, b_2, \ldots, b_0 = 5$ तथा $b_k = 4 + b_{k-1}$ द्वारा परिभाषित है। गणितीय आगमन के प्रयोग द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या के लिए $b_n = 5 + 4n$.

3. सभी प्राकृत संख्या $k\geq 2$ के लिए अनुक्रम $d_1,d_2d_3...$, d_1 = 2 तथा $d_k=rac{d_{k-1}}{k}$, द्वारा परिभाषित है। सिद्ध कीजिए कि सभी $n\in N$ के लिए $d_n=rac{2}{n!}$

4. सभी $n \in N$ के लिए, सिद्ध कीजिए कि,

$$\cos lpha + \cos (lpha + eta) + \cos (lpha + 2eta) + + \cos (lpha + (n-1)eta)$$

$$=\frac{\cos\left(\alpha+\left(\frac{n-1}{2}\right)\beta\right)\sin\left(\frac{n\beta}{2}\right)}{\sin\frac{\beta}{2}}$$


5. सभी
$$n\in N$$
 के लिए, सिद्ध कीजिए कि $\cos heta,\cos 2 heta\cos 2^2 heta....\cos 2^{n-1} heta=rac{\sin(2^n heta)}{2^n\sin heta}$

6. सभी
$$n \in N$$
 के लिए, सिद्ध कीजिए कि, $\dfrac{n^5}{5} + \dfrac{n^3}{3} + \dfrac{7n}{15}$ एक प्राकृत संख्या है।

7. सभी प्राकृत संख्या n>1 के लिए सिद्ध कीजिए कि $rac{1}{n+1} + rac{1}{n+2} + + rac{1}{2n} > rac{13}{24}$

8. सभी $n \in N$ के लिए, सिद्ध कीजिए कि n भिन्न-भिन्न distinct अवयव वाले (अंतर्विष्ट किए हुए) समुच्चय के उपसमुच्चयों की संख्या 2^n है।

4 3 प्रश्नावली वस्तुनिष्ठ प्रश्न प्रश्न

1. यदि सभी $n \in N$ के लिए, $10^n + 3.4^{n+2} + k$, संख्या 9 से भाज्य है, तो ${\sf k}$ का लघुतम पूर्णांक मानः

- A. 5
- B. 3
- C. 7
- D. 1

Answer:

वीडियो उत्तर देखें

- **2.** सभी $n \in N$ के लिए, $3.5^{2n+1} + 2^{3n+1}$, निम्नलिखित में से किस संख्या से भाज्य है:
 - A. 19
 - B. 17
 - C. 23

Answer:

वीडियो उत्तर देखें

3. यदि $x^n-1,\,x-k$, से भाज्य है, तो k का न्यूनतम पूर्णांक है:

A. 1

B. 2

C. 3

D. 4

Answer:

वीडियो उत्तर देखें

4. निम्नलिखित प्रश्न में रिक्त स्थान की पूर्ति कीजिए:

यदि P(n) : $2n < n!, n \in N$, तो P(n) सभी $n \geq$ _____ के लिए सत्य

है।

5. बताइए कि निम्नलिखित कथन सत्य है या असत्य है। औचित्य भी बताइएः \$ मान लीजिए कि \$ P(n) एक कथन है और मान लीजिए कि किसी प्राकृत संख्या \$ के लिए $P(k) \Rightarrow P(k+1)$, तो P(n) सभी $n \in N$ के लिए सत्य है।

