

CHEMISTRY

BOOKS - U-LIKE CHEMISTRY (HINGLISH)

HALOALKANES AND HALOARENES

Ncert Intext Questions

- 1. Write structures of the following compounds:
- (i) 2-Chloro -3- methylpentane (ii) 1-Chloro -4- ethylcyclohexane
- (iii) 4- Tert.Butyl-3-iodoheptane (iv) 1, 4-Dibromobut -2- ene
- (v) 1-Bromo -4-sec. butyl -2-methylbenzene

View Text Solution

2. Why is sulphuric acid not used during the reaction of alcohols with KI?

3. Write structures of different dihalogen derivaties of propane.

- **4.** Among the isomeric alkanes of molecular formula C_5H_{12} , identify the one that on photo chemical chlorination yields
- (i) a single monochloride. (ii) three isomeric monochlorides.
- (iii) four isomeric monochlorides.

5. Draw the structures of major monohalo procucts in each of the following reactions :

View Text Solution

- **6.** Arrange each set of compounds in order of increasing boiling points.
- (i) Bromomethane, Bromoform, Chloromethane, Dibromomethane.
- (ii) 1-Chloropropane, Isopropyl chloride, 1-Chlorobutane.

View Text Solution

7. Which alkyl halide from the following pairs would you expect to react more rapidly by $S_N 2$ mechanism ? Explain your answer.

$$CH_3CH_2CH_2CH_2$$
 or $CH_3CH_2-CH-CH_3$ Br_{CH_3}

(ii)
$$CH_3CH_2CHCH_3$$
 or $H_3C-\stackrel{|}{C}_{CH_3}$

(iii)
$$CH_3$$
 C HCH_2CH_2Br or CH_3CH_2 C HCH_2Br CH_3

8. In the following pairs of halogen compounds, which compound undergoes faster $S_N 1$ reaction ?

View Text Solution

9. Identify A, B, C, D, E, R and \mathbb{R}^1 in the following :

 $R-Br+Mg \xrightarrow{ ext{dry ether}} C \xrightarrow{D_2O} CH_3-CH-CH_3$

View Text Solution

Ncert Textbook Exercises

1. Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

 $(CH_3)_2CHCH(Cl)CH_3$

View Text Solution

2. Name the following halides according to IUPAC system and classify them as alkyl , allyl , benzyl (primary , secondary , tertiary), vinyl or aryl halides :

 $CH_3CH_2CH(CH_3)CH(C_2H_5)Cl$

View Text Solution

3. Name the following halides according to IUPAC system and classify them as alkyl , allyl , benzyl (primary , secondary , tertiary), vinyl or aryl halides :

 $CH_3CH_2C(CH_3)_2CH_2I$

View Text Solution

4. Name the following halides according to IUPAC system and classify them as alkyl , allyl , benzyl (primary , secondary , tertiary), vinyl or aryl

 $(CH_3)_3CCH_2CH(Br)C_6H_5$

halides:

5. Name the following halides according to IUPAC system and classify them as alkyl , allyl , benzyl (primary , secondary , tertiary), vinyl or aryl halides :

 $CH_3CH(CH_3)CH(Br)CH_3$

6. Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

 $CH_3C(C_2H_5)_2CH_2Br$

7. Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

 $CH_3C(Cl)(C_2H_5)CH_2CH_3$

View Text Solution

8. Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

 $CH_3CH = C(Cl)CH_2CH(CH_3)$

View Text Solution

9. Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

 $CH_3CH = CHC(Br)(CH_3)_2$

10. Name the following halides according to IUPAC system and classify them as alkyl , allyl , benzyl (primary , secondary , tertiary), vinyl or aryl halides :

$$p - ClC_6H_4CH_2CH(CH_3)_2$$

11. Name the following halides according to IUPAC system and classify them as alkyl , allyl , benzyl (primary , secondary , tertiary), vinyl or aryl halides :

$$m-ClCH_2C_6H_4CH_2C(CH_3)_3$$

12. Name the following halides according to IUPAC system and classify them as alkyl , allyl , benzyl (primary , secondary , tertiary), vinyl or aryl

 $o - Br - C_6H_4CH(CH_3)CH_2CH_3$

halides:

- **13.** Give the IUPAC names of the following compounds:
 - (i) $CH_3CH(Cl)CH(Br)CH_3$ (ii) $CHF_2CBrClF$

$$(iii)ClCH_2C \equiv CCH_2Br \qquad (iv)(CCl_3)_3CCl$$

14. Give the IUPAC names of the following compounds:

 $(v)CH_3C(p-ClC_6H_4)_2CH(Br)CH_3$ $(vi)(CH_3)_3CCH = ClC_6H_4I$

- - 2-Chloro -3- methylpentane

15. Give the IUPAC names of the following compounds :
p-Bromochlorobenzene
View Text Solution
16. Give the IUPAC names of the following compounds :
1-Chloro -4- ethylclohexane
View Text Solution
View lext solution
17. Give the IUPAC names of the following compounds :
2-(2-Chlorophenyl)-1-iodooctane
2 (2 cmoropheny), riodooceane
View Text Solution
18. Give the IUPAC names of the following compounds :
Perfluorobenzene

View Text Solution
19. Give the IUPAC names of the following compounds:
4-tert -Butyl -3- iodoheptane
View Text Solution
20. Give the IUPAC names of the following compounds :
1-Bromo -4-sec - butyl -2-methylbenzene
View Text Solution
21. Give the IUPAC names of the following compounds :
1.4 Dibususahut 2 ana
1,4- Dibromobut -2-ene
View Text Solution

22. Which one of the following has the highest dipole moment ? $(i)CH_2Cl_2 \quad (ii)CHCl_3 \quad (iii)CCl_4.$ 23. A hydrocarbon C_5H_{10} does not react with chlorine in dark but gives a single monochloro compound C_5H_9Cl in bright sunlight. Identify the hydrocarbon .

24. Write the isomers of the compound having formula C_4H_9Br .

25. Write the equations for the preparation of 1- iodobutane from (i) 1- butanol (ii) 1-chlorobutane (iii) but -1-ene.

26. What are ambident nucleophiles? Explain with an example.

27. Which compound in each of the following pairs will react faster in $S_N 2$ reaction with -OH?

 $(i)CH_3Br$ or CH_3I $(ii)(CH_3)_3CCl$ or CH_3Cl

28. Predict all the alkenes that would be formed by dehydrohalogenation of the following halides with sodium ethoxide in ethanol and identify the major alkene:

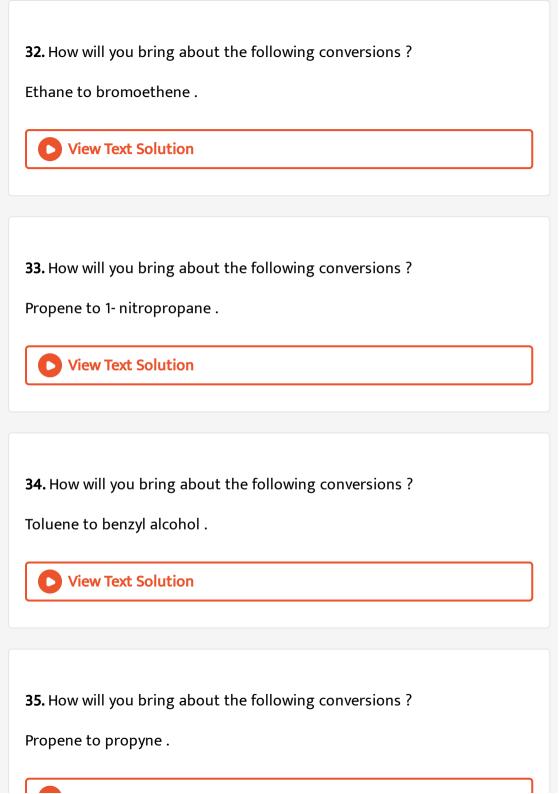
1-Bromo -1- methylcyclohexane

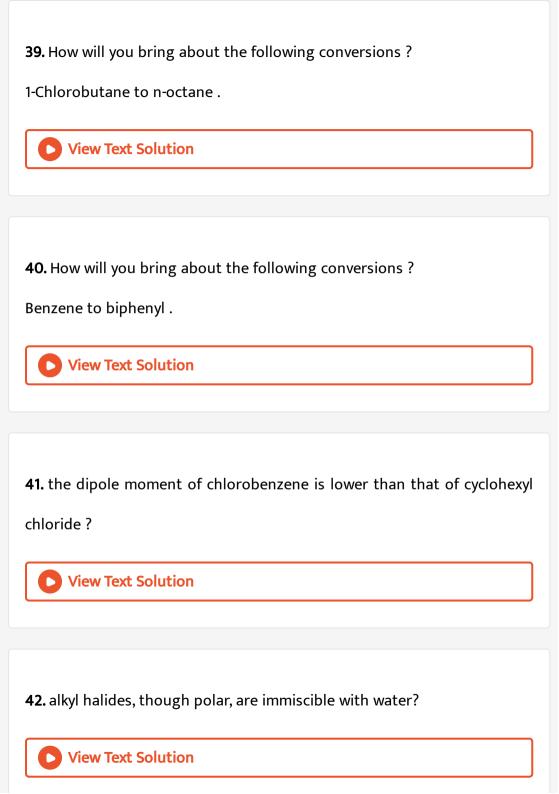
View Text Solution

29. Predict all the alkenes that would be formed by dehydrohalogenation of the following halides with sodium ethoxide in ethanol and identify the major alkene:

2-chloro -2- methylbutane

30. Predict all the alkenes that would be formed by dehydrohalogenation of the following halides with sodium ethoxide in ethanol and identify the major alkene:


2,2,3- trimethyl -3-Bromopentane


31. How will you bring about the following conversions?

Ethanol to but -1- yne.

View Text Solution
26 Have will you being about the fallowing conversions ?
36. How will you bring about the following conversions?
Ethanol to ethyl fluoride .
View Text Solution
37. How will you bring about the following conversions?
Bromomethane to propanone .
bromomethane to propanone.
View Text Solution
38. How will you bring about the following conversions?
But -1- ene to but -2- ene .
but -i- elle to but -z- elle .
View Text Solution

43. Grignard reagents should be prepared under anhydrous conditions?

View Text Solution

44. Write the structure of the major organic product in each of the following reaction :

$$CH_3CH_2CH_2Cl + NaI \xrightarrow{ ext{acetone}}^{ ext{heat}}$$

45. Write the structure of the major organic product in each of the following reaction :

$$(CH_3)_3CBr+KOH \stackrel{ ext{ethanol}}{\longrightarrow} \atop ext{heat}$$

View Text Solution

46. Write the structure of the major organic product in each of the following reaction :

$$CH_3CH(Br)CH_2CH_3 + NaOH \stackrel{\mathrm{water}}{\longrightarrow}$$

View Text Solution

47. Write the structure of the major organic product in each of the following reaction :

$$CH_3CH_2Br + KCN \xrightarrow{ ext{aq.ethanol}}$$

View Text Solution

48. Write the structure of the major organic product in each of the following reaction :

$$C_6H_5ONa + C_2H_5Cl
ightarrow$$

View Text Solution

49. Write the structure of the major organic product in each of the following reaction :

$$CH_3CH_2CH_2OH + SOCl_2
ightarrow$$

View Text Solution

50. Write the structure of the major organic product in each of the following reaction :

$$CH_3CH_2CH = CH_2 + HBr \xrightarrow{\mathrm{peroxide}}$$

51. Write the structure of the major organic product in each of the following reaction :

$$CH_3CH = C(CH_3)_2 + HBr
ightarrow$$

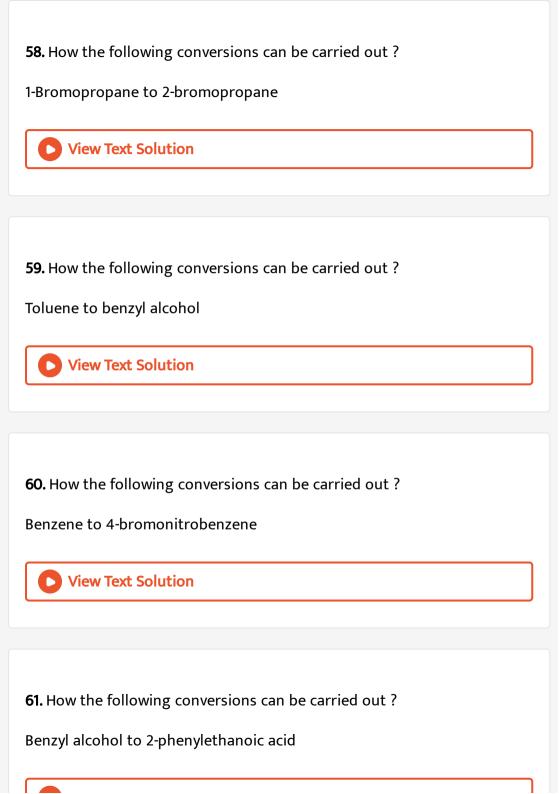
52. Write the mechanism of the following reaction :

$$nBuBr + KCN \xrightarrow{EtOH-H_2O} nBuCN$$

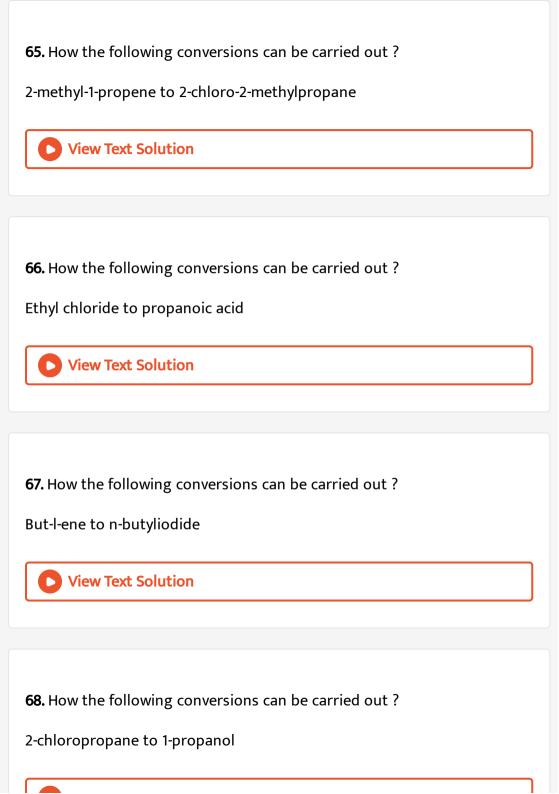
View Text Solution

53. Arrange the compounds of each set in order of reactivity towards $S_N 2$ displacement :

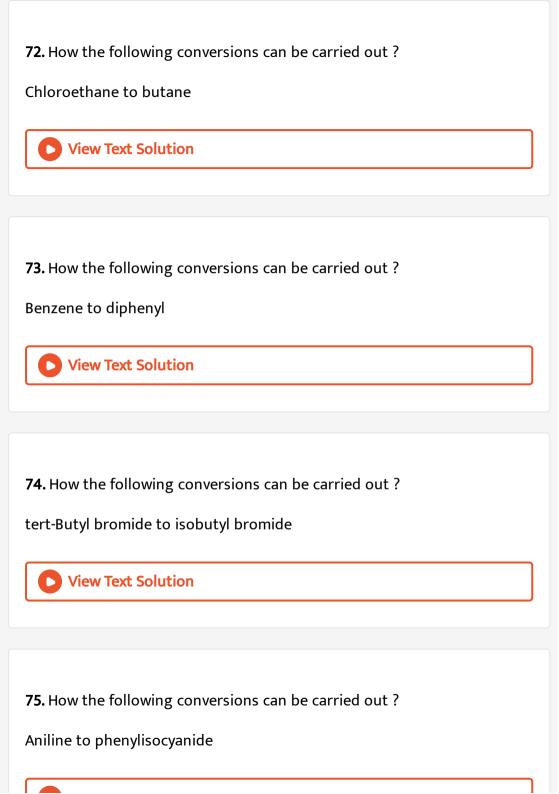
- (i) 2- Bromo-2-methylbutane , 1- Bromopentane, 2- Bromopentane
- (ii) 1-Bromo -3- methylbutane, 2- Bromo -2- methylbutane, 3- Bromo -2-
- methylbutane.
- (iii) 1-Bromobutane, 1- Bromo -2, 2- dimethylpropane, 1- Bromo -2- methylbutane, 1- Bromo -3- methylbutane.



54. Out of $C_6H_5CH_2Cl$ and $C_6H_5CHClC_6H_5$ which is more easily hydrolysed by equeous KOH ?



55. p-Dichlorobenzene has higher m.p. and lower solubility than those of
o - and m-isomers. Discuss.
View Text Solution
56. How the following conversions can be carried out ?
Propene to propan-1-ol
View Text Solution
57. How the following conversions can be carried out?
Ethanol to but-1-yne
View Text Solution


view text Solution

View Text Solution
62. How the following conversions can be carried out?
Ethanal ta pranapanitrila
Ethanol to propanenitrile
Nigara Tout Calletian
View Text Solution
63. How the following conversions can be carried out?
Aniline to chlorobenzene
View Text Solution
O VIEW TEXT SOLUTION
64. How the following conversions can be carried out?
2-Chlorobutane to 3, 4-dimethylhexane
View Text Solution

View Text Solution
69. How the following conversions can be carried out ?
Isopropyl alcohol to iodoform
View Text Solution
70. How the following conversions can be carried out ?
76. How the following conversions can be carried out.
Chlorobenzene to p-nitrophenol
View Text Solution
71 How the following conversions can be carried out?
71. How the following conversions can be carried out?
2-Bromopropane to 1-bromopropane
View Text Solution

76. The treatment of alkyl chlorides with aqueous KOH leads to the formation of alcohols but in the presence of alcoholic KOH, alkenes are major products. Explain.

77. Primary alkyl halide C_4H_9Br (a) reacted with alcoholic KOH to give compound (b). Compound (b) is reacted with HBr to give (c) which is an isomer of (a). When (a) is reacted with sodium metal, it gives a compound (d), C_8H_{18} which is different from the compound formed when n-butyl bromide is reacted with sodium. Give the structural formula of (a) and write the equations for all the reactions.

78. What happens when n-butyl chloride is treated with alcoholic KOH. **View Text Solution** 79. What happens when bromobenzene is treated with Mg in the presence of dry ether. **View Text Solution** 80. What happens when chlorobenzene is subjected to hydrolysis. **View Text Solution** 81. What happens when ethyl chloride is treated with aqueous KOH.

82. What happens when methyl bromide is treated with sodium in the presence of dry ether.

methyl chloride is treated with KCN ?

83. What happens when

Case Based Source Based Integrated Questions

1. Read the given passage and answer questions follow:

The replacement of hydrogen atom(s) in an aliphatic or aromatic hydrocarbon by halogen atom(s) results in the formation of alkyl halide (haloalkane) and aryl halide (haloarene),respectively. Haloalkanes contain

halogen atom(s) attached to the sp^3 hybridised carbon atom of an alkyl group whereas haloarenes contain halogen atom(s) attached to sp^2 hybridised carbon atom(s) of an aryl group. Many halogen containing organic compounds occur in nature and some of these are clinically useful. These classes of compounds find wide applications in industry as well as in day-to-day life. They are used as solvents for relatively non-polar compounds and as starting materials for the synthesis of wide range of organic compounds. Chlorine containing antibiotic, chloramphenicol, produced by microorganisms is very effective for the treatment of typhoid fever. Our body produces iodine containing hormone, thyroxine, the deficiency of which causes a disease called goiter. Synthetic halogen compounds, viz. chloroquine is used for the treatment of malaria, halothane is used as an anaesthetic during surgery.

Out of C_2H_5Cl and C_6H_5Cl halogen compounds, which has the halogen attached to sp^2 hybridised carbon atom ?

2. Read the given passage and answer questions follow:

The replacement of hydrogen atom(s) in an aliphatic or aromatic hydrocarbon by halogen atom(s) results in the formation of alkyl halide (haloalkane) and aryl halide (haloarene), respectively. Haloalkanes contain halogen atom(s) attached to the sp^3 hybridised carbon atom of an alkyl group whereas haloarenes contain halogen atom(s) attached to sp^2 hybridised carbon atom(s) of an aryl group. Many halogen containing organic compounds occur in nature and some of these are clinically useful. These classes of compounds find wide applications in industry as well as in day-to-day life. They are used as solvents for relatively non-polar compounds and as starting materials for the synthesis of wide range of organic compounds. Chlorine containing antibiotic, chloramphenicol, produced by microorganisms is very effective for the treatment of typhoid fever. Our body produces iodine containing hormone, thyroxine, the deficiency of which causes a disease called goiter. Synthetic halogen compounds, viz. chloroquine is used for the treatment of malaria, halothane is used as an anaesthetic during surgery.

Can we use halogen containing organic solvents to dissolve potassium chloride?

View Text Solution

3. Read the given passage and answer questions follow:

The replacement of hydrogen atom(s) in an aliphatic or aromatic hydrocarbon by halogen atom(s) results in the formation of alkyl halide (haloalkane) and aryl halide (haloarene), respectively. Haloalkanes contain halogen atom(s) attached to the sp^3 hybridised carbon atom of an alkyl group whereas haloarenes contain halogen atom(s) attached to sp^2 hybridised carbon atom(s) of an aryl group. Many halogen containing organic compounds occur in nature and some of these are clinically useful. These classes of compounds find wide applications in industry as well as in day-to-day life. They are used as solvents for relatively non-polar compounds and as starting materials for the synthesis of wide range of organic compounds. Chlorine containing antibiotic, chloramphenicol, produced by microorganisms is very effective for the treatment of typhoid fever. Our body produces iodine containing hormone, thyroxine,

the deficiency of which causes a disease called goiter. Synthetic halogen compounds, viz. chloroquine is used for the treatment of malaria, halothane is used as an anaesthetic during surgery.

Name a chlorine containing compound produced by microorganisms for the treatment of typhoid fever.

View Text Solution

4. Read the given passage and answer questions follow:

The replacement of hydrogen atom(s) in an aliphatic or aromatic hydrocarbon by halogen atom(s) results in the formation of alkyl halide (haloalkane) and aryl halide (haloarene),respectively. Haloalkanes contain halogen atom(s) attached to the sp^3 hybridised carbon atom of an alkyl group whereas haloarenes contain halogen atom(s) attached to sp^2 hybridised carbon atom(s) of an aryl group. Many halogen containing organic compounds occur in nature and some of these are clinically useful. These classes of compounds find wide applications in industry as well as in day-to-day life. They are used as solvents for relatively non-polar compounds and as starting materials for the synthesis of wide range of

organic compounds. Chlorine containing antibiotic, chloramphenicol, produced by microorganisms is very effective for the treatment of typhoid fever. Our body produces iodine containing hormone, thyroxine, the deficiency of which causes a disease called goiter. Synthetic halogen compounds, viz. chloroquine is used for the treatment of malaria, halothane is used as an anaesthetic during surgery.

What is thyroxine?

View Text Solution

${f 5.}$ Read the given passage and answer questions follow:

The replacement of hydrogen atom(s) in an aliphatic or aromatic hydrocarbon by halogen atom(s) results in the formation of alkyl halide (haloalkane) and aryl halide (haloarene),respectively. Haloalkanes contain halogen atom(s) attached to the sp^3 hybridised carbon atom of an alkyl group whereas haloarenes contain halogen atom(s) attached to sp^2 hybridised carbon atom(s) of an aryl group. Many halogen containing organic compounds occur in nature and some of these are clinically useful. These classes of compounds find wide applications in industry as

well as in day-to-day life. They are used as solvents for relatively non-polar compounds and as starting materials for the synthesis of wide range of organic compounds. Chlorine containing antibiotic, chloramphenicol, produced by microorganisms is very effective for the treatment of typhoid fever. Our body produces iodine containing hormone, thyroxine, the deficiency of which causes a disease called goiter. Synthetic halogen compounds, viz. chloroquine is used for the treatment of malaria, halothane is used as an anaesthetic during surgery.

What is the use of halothane?

6. Read the given passage and answer questions follow:

The hydroxyl group of an alcohol is replaced by halogen on reaction with concentrated halogen acids, phosphorus halides or thionyl chloride. Thionyl chloride is preferred because in this reaction alkyl halide is formed along with gases SO_2 and HCl. The two gaseous products are escapable, hence, the reaction gives pure alkyl halides. The reactions of primary and secondary alcohols with HCl require the presence of a

catalyst, $ZnCl_2$. With tertiary alcohols, the reaction is conducted by simply shaking the alcohol with concentrated HCl at room temperature. Constant boiling with HBr $(48\,\%)$ is used for preparing alkyl bromide. Good yields of R- I may be obtained by heating alcohols with sodium or potassium iodide in $95\,\%$ orthophosphoric acid. The order of reactivity of alcohols with a given haloacid is $3^\circ>2^\circ>1^\circ$. Phosphorus tribromide and triiodide are usually generated in situ (produced in the reaction mixture) by the reaction of red phosphorus with bromine and iodine respectively.

Name the reagents that can be used for halogenation of alcohols.

7. Read the given passage and answer questions follow:

The hydroxyl group of an alcohol is replaced by halogen on reaction with concentrated halogen acids, phosphorus halides or thionyl chloride. Thionyl chloride is preferred because in this reaction alkyl halide is formed along with gases SO_2 and HCl. The two gaseous products are escapable, hence, the reaction gives pure alkyl halides. The reactions of

primary and secondary alcohols with HCl require the presence of a catalyst, $ZnCl_2$. With tertiary alcohols, the reaction is conducted by simply shaking the alcohol with concentrated HCl at room temperature. Constant boiling with HBr $(48\,\%)$ is used for preparing alkyl bromide. Good yields of R- I may be obtained by heating alcohols with sodium or potassium iodide in $95\,\%$ orthophosphoric acid. The order of reactivity of alcohols with a given haloacid is $3^\circ>2^\circ>1^\circ$. Phosphorus tribromide and triiodide are usually generated in situ (produced in the reaction mixture) by the reaction of red phosphorus with bromine and iodine respectively.

Why do we prefer thionyl chloride for the preparation of alkyl halides?

8. Read the given passage and answer questions follow:

The hydroxyl group of an alcohol is replaced by halogen on reaction with concentrated halogen acids, phosphorus halides or thionyl chloride. Thionyl chloride is preferred because in this reaction alkyl halide is formed along with gases SO_2 and HCl. The two gaseous products are

escapable, hence, the reaction gives pure alkyl halides. The reactions of primary and secondary alcohols with HCl require the presence of a catalyst, $ZnCl_2$. With tertiary alcohols, the reaction is conducted by simply shaking the alcohol with concentrated HCl at room temperature. Constant boiling with HBr (48%) is used for preparing alkyl bromide. Good yields of R-I may be obtained by heating alcohols with sodium or potassium iodide in $95\,\%$ orthophosphoric acid. The order of reactivity of alcohols with a given haloacid is $3^{\circ}>2^{\circ}>1^{\circ}$. Phosphorus tribromide and triiodide are usually generated in situ (produced in the reaction mixture) by the reaction of red phosphorus with bromine and iodine respectively.

Which catalyst is required when we prepare halogen compounds using concentrated HCI?

9. Read the given passage and answer questions follow:

The hydroxyl group of an alcohol is replaced by halogen on reaction with concentrated halogen acids, phosphorus halides or thionyl chloride.

Thionyl chloride is preferred because in this reaction alkyl halide is formed along with gases SO_2 and HCl. The two gaseous products are escapable, hence, the reaction gives pure alkyl halides. The reactions of primary and secondary alcohols with HCl require the presence of a catalyst, $ZnCl_2$. With tertiary alcohols, the reaction is conducted by simply shaking the alcohol with concentrated HCl at room temperature. Constant boiling with HBr (48%) is used for preparing alkyl bromide. Good yields of R-I may be obtained by heating alcohols with sodium or potassium iodide in 95% orthophosphoric acid. The order of reactivity of alcohols with a given haloacid is $3^{\circ}>2^{\circ}>1^{\circ}$. Phosphorus tribromide and triiodide are usually generated in situ (produced in the reaction mixture) by the reaction of red phosphorus with bromine and iodine respectively.

How are PBr_3 and PI_3 prepared for halogenating the hydroxyl group of alcohols?

View Text Solution

10. Read the given passage and answer questions follow:

The hydroxyl group of an alcohol is replaced by halogen on reaction with concentrated halogen acids, phosphorus halides or thionyl chloride. Thionyl chloride is preferred because in this reaction alkyl halide is formed along with gases SO_2 and HCl. The two gaseous products are escapable, hence, the reaction gives pure alkyl halides. The reactions of primary and secondary alcohols with HCl require the presence of a catalyst, $ZnCl_2$. With tertiary alcohols, the reaction is conducted by simply shaking the alcohol with concentrated HCl at room temperature. Constant boiling with HBr (48%) is used for preparing alkyl bromide. Good yields of R-I may be obtained by heating alcohols with sodium or potassium iodide in $95\,\%$ orthophosphoric acid. The order of reactivity of alcohols with a given haloacid is $3^{\circ}>2^{\circ}>1^{\circ}$. Phosphorus tribromide and triiodide are usually generated in situ (produced in the reaction mixture) by the reaction of red phosphorus with bromine and iodine respectively.

Give the reactivity order of alcohols in halogenation using a haloacid.

11. Read the given passage and answer questions follow:

Tetrachloromethane is produced in large quantities for use in the manufacture of refrigerants and propellants for aerosol cans. It is also used as feedstock in the synthesis of chlorofluorocarbons and other chemicals, pharmaceutical manufacturing, and general solvent use. Until the mid 1960s, it was also widely used as a cleaning fluid, both in industry, as a degreasing agent, and in the home, as a spot remover and as fire extinguisher. There is some evidence that exposure to carbon tetrachloride causes liver cancer in humans. The most common effects are dizziness, light headedness, nausea and vomiting, which can cause permanent damage to nerve cells. In severe cases, these effects can lead rapidly to stupor, coma, unconsciousness or death. Exposure to CCl_4 can make the heart beat irregularly or stop. The chemical may irritate the eyes on contact. When carbon tetrachloride is released into the air, it rises to the atmosphere and depletes the ozone layer. Depletion of the ozone layer is believed to increase human exposure to ultraviolet rays, leading to increased skin cancer, eye diseases and disorders, and possible

disruption of the immune system.

Give two uses of tetrachloromethane.

View Text Solution

12. Read the given passage and answer questions follow:

Tetrachloromethane is produced in large quantities for use in the manufacture of refrigerants and propellants for aerosol cans. It is also used as feedstock in the synthesis of chlorofluorocarbons and other chemicals, pharmaceutical manufacturing, and general solvent use. Until the mid 1960s, it was also widely used as a cleaning fluid, both in industry, as a degreasing agent, and in the home, as a spot remover and as fire extinguisher. There is some evidence that exposure to carbon tetrachloride causes liver cancer in humans. The most common effects are dizziness, light headedness, nausea and vomiting, which can cause permanent damage to nerve cells. In severe cases, these effects can lead rapidly to stupor, coma, unconsciousness or death. Exposure to CCl_4 can make the heart beat irregularly or stop. The chemical may irritate the eyes on contact. When carbon tetrachloride is released into the air, it rises to the atmosphere and depletes the ozone layer. Depletion of the ozone layer is believed to increase human exposure to ultraviolet rays, leading to increased skin cancer, eye diseases and disorders, and possible disruption of the immune system.

Why was the use of tetrachloromethane as cleaning and degreasing agent stopped after mid 1960s ?

View Text Solution

13. Read the given passage and answer questions follow:

Tetrachloromethane is produced in large quantities for use in the manufacture of refrigerants and propellants for aerosol cans. It is also used as feedstock in the synthesis of chlorofluorocarbons and other chemicals, pharmaceutical manufacturing, and general solvent use. Until the mid 1960s, it was also widely used as a cleaning fluid, both in industry, as a degreasing agent, and in the home, as a spot remover and as fire extinguisher. There is some evidence that exposure to carbon tetrachloride causes liver cancer in humans. The most common effects are dizziness, light headedness, nausea and vomiting, which can cause

permanent damage to nerve cells. In severe cases, these effects can lead rapidly to stupor, coma, unconsciousness or death. Exposure to CCl_4 can make the heart beat irregularly or stop. The chemical may irritate the eyes on contact. When carbon tetrachloride is released into the air, it rises to the atmosphere and depletes the ozone layer. Depletion of the ozone layer is believed to increase human exposure to ultraviolet rays, leading to increased skin cancer, eye diseases and disorders, and possible disruption of the immune system.

What are the adverse health effects of exposure to carbon tetrachloride?

14. Read the given passage and answer questions follow:

Tetrachloromethane is produced in large quantities for use in the manufacture of refrigerants and propellants for aerosol cans. It is also used as feedstock in the synthesis of chlorofluorocarbons and other chemicals, pharmaceutical manufacturing, and general solvent use. Until the mid 1960s, it was also widely used as a cleaning fluid, both in industry, as a degreasing agent, and in the home, as a spot remover and as fire

extinguisher. There is some evidence that exposure to carbon tetrachloride causes liver cancer in humans. The most common effects are dizziness, light headedness, nausea and vomiting, which can cause permanent damage to nerve cells. In severe cases, these effects can lead rapidly to stupor, coma, unconsciousness or death. Exposure to CCl_4 can make the heart beat irregularly or stop. The chemical may irritate the eyes on contact. When carbon tetrachloride is released into the air, it rises to the atmosphere and depletes the ozone layer. Depletion of the ozone layer is believed to increase human exposure to ultraviolet rays, leading to increased skin cancer, eye diseases and disorders, and possible disruption of the immune system.

What is the role of CCl4 to ozone layer?

View Text Solution

15. Read the given passage and answer questions follow:

Tetrachloromethane is produced in large quantities for use in the manufacture of refrigerants and propellants for aerosol cans. It is also used as feedstock in the synthesis of chlorofluorocarbons and other

chemicals, pharmaceutical manufacturing, and general solvent use. Until the mid 1960s, it was also widely used as a cleaning fluid, both in industry, as a degreasing agent, and in the home, as a spot remover and as fire extinguisher. There is some evidence that exposure to carbon tetrachloride causes liver cancer in humans. The most common effects are dizziness, light headedness, nausea and vomiting, which can cause permanent damage to nerve cells. In severe cases, these effects can lead rapidly to stupor, coma, unconsciousness or death. Exposure to CCl_4 can make the heart beat irregularly or stop. The chemical may irritate the eyes on contact. When carbon tetrachloride is released into the air, it rises to the atmosphere and depletes the ozone layer. Depletion of the ozone layer is believed to increase human exposure to ultraviolet rays, leading to increased skin cancer, eye diseases and disorders, and possible disruption of the immune system.

How does carbon tetrachloride affect the heart?

View Text Solution

1. Chloroform on exposure to air in the presence of light produces
A. phosphoryl chloride.
B. phosphine .
C. phosphorus oxytrichloride.
D. phosgene.
Answer: d
View Text Solution
2. Chlorobenzene reacts with alkyl chloride in the presence of sodium metal gives
A. toluene.
B. xylene.
C. phenol .
D. benzyl chloride.

Answer: a

- 3. Which of the following statements about DDT is incorrect?
 - A. Many species of insects developed resistance to DDT.
 - B. DDT is safe to use as insecticide.
 - C. It has a high toxicity towards fish.
 - D. DDT is not metabolised rapidly by animals.

Answer: b

View Text Solution

4. Which of the following is not used for the preparation of alkyl halides from alcohols ?

Answer: a **View Text Solution 5.** Which of the following is least reactive towards $S_N 2$ reaction ? A. CH_3X B. Primary halide C. Secondary halide D. Tertiary halide

A. Cl_2

 $\mathsf{C}.\,PCl_5$

D. $SOCl_2$

B. $HCl/ZnCl_2$

6.	Alkyl	iodides	are	often	prepared	by	the	reaction	of	alkyl
chl	orides,	/bromides	s with	Nal in o	dry acetone.	This	react	ion is knov	vn as	5
	A. Wui	rtz reactic	on .							
	B. Fink	kelstein re	actio	n.						
	C. Gng	gnard read	tion .							
	D. San	dmeyer's	reacti	on .						

Answer: b

7. Which of the following has the least boiling point?

A. CH_3CH_2Br

B. $CH_3CH_2CHCH_3$ CH_3

C. $CH_3CH_2CH_2CH_2Br$

D.
$$H_3C-rac{CH_3}{C}-CH_3$$

Answer: a

8. Vinylic halides are compounds in which the halogen atom is bonded to sp hybridised carbon atom of

A. an alkane.

B. an alkene.

C. an alkyne.

D. an aromatic ring.

Answer: b

View Text Solution

9. Propene on treatment with HI gives

A. Only $CH_3CH_2CH_2I$

B. Only CH_3CHICH_3

C. $CH_3CH_2CH_2(\mathrm{minor}\)+CH_3CHICH_3(\mathsf{major})$

D. $CH_3CH_2CH_2I(\mathrm{major}) + CH_3CHICH_3$ (minor)

Answer: c

10. Treatment of toluene with a halogen in dark in the presence of Fe gives

A. o-Halotoluene.

B. p-Halotoluene.

C. m-Halotoluene.

D. Mixture of o- and p- Halotoluene.

Answer: d

11. Molecules whose mirror image is non superimposable over them are known as chiral. Which of the following molecules is chiral in nature ?

- A. 2-Bromobutane
- B. 1-Bromobutane
- C. 2-Bromopropane
- D. 2-Bromopropan -1-ol

Answer: a

View Text Solution

12. Which of the following compounds will give racemic mixture on nucleophilic substitution by OH^- ion ?

$$(a)CH_3 - C H - Br \qquad (b)CH_3 - C - CH_3 \qquad (c)CH_3 - C H - C - CH_3$$
 $A. (a)$
 $B. (a), (b), (c)$
 $C. (b), (c)$
 $D. (a), (c)$

Answer: a

A.
$$(CH_3)_2CHBr$$

$$\mathcal{A}.(OH_3)_2OHD$$

B.
$$(CH_3)_3CCH_2Br$$

13. Which of the following are secondary bromides?

$$\mathsf{C.}\,CH_3CH(Br)CH_2CH_3$$

D.
$$(CH_3)_2CBrCH_2CH_3$$

Answer: a, b

View Text Solution

14. Reaction of $C_6H_5CH_2Br$ with aqueous sodium hydroxide follows

----- '

- A. $S_N 1$ mechanism
- B. S_N2 mechanism
- C. any of the above two depending upon the temperature of reaction
- D. Saytzeff rule

Answer: a

View Text Solution

15. Toluene reacts with a halogen in the presence of Fe(III) chloride giving ortho and para halo compounds. The reaction is

A. electrophilic elimination reaction. B. electrophilic substitution reaction. C. free radical addition reaction. D. nucleophilic substitution reaction. Answer: b **View Text Solution** 16. Chloromethane on treatment with excess of ammonia yields mainly A. N, N - Dimethylmethanamine B. N- methylmethanamine $(CH_3 - NH - CH_3)$ C. Methanamine (CH_3NH_2) D. Mixture containing all these in equal proportion Answer: c

17. Which of the following compounds are gem-dihalides?

A. Ethylidene chlride

B. Ethylene dichloride

C. Methylene chloride

D. Benzyl chloride

Answer: a, c

A. Dichloromethane

B. 1,2- dichloroethane

18. Which of the following is an example of vic-dihalide?

C. Ethylidine chloride

D. Allylchloride

Answer: b

View Text Solution

19. Which reagent would you use for the following reaction?

 $CH_3CH_2CH_2CH_3
ightarrow CH_3CH_2CH_2Cl + CH_3CH_2CHClCH_3$

A. $Cl_2 \, / \, UV$ light

B. $NaCl + H_2SO_4$

C. Cl_2 gas in dark

D. Cl_2 gas in the presence of iron in dark

Answer: a

View Text Solution

1. Assertion (A): In the case of optically active alkyl halide, the product formed as a result of $S_N 2$ mechanism has the inverted configuration as compared to the reactant.

Reason (R) In $S_N 2$ mechanism, the nucleophile attaches itself on the side opposite to the one where the halogen is present resulting in inversion in configuration of the product.

A. Both Assertion (A) and Resort (R) are correct statements, quid

Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Reason (R) are correct statements, brit

Reason (R) is not the correct explanation of the Assertion (A).

C. Assertion (A) is correct, but Reason (R) is incorrect statement.

D. Assertion (A) is incorrect, but Renson (R) is correct statement.

Answer: a

2. Assertion (A): A racemic mixture is represented by fixing dl or (\pm) before the name.

Reason (R): Aryl halides are extremely reactive towards nucleophilic substitutions.

A. Both Assertion (A) and Resort (R) are correct statements, quid

Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Reason (R) are correct statements, brit

Reason (R) is not the correct explanation of the Assertion (A).

C. Assertion (A) is correct, but Reason (R) is incorrect statement.

D. Assertion (A) is incorrect, but Renson (R) is correct statement.

Answer: c

3. Assertion (A): The stereoisomer's related to each other as non-super imposable mirror images are called enantiomers.

Reason (R): Butan-2-ol has four different groups attached to the tetrahedral carbon and is chiral.

A. Both Assertion (A) and Resort (R) are correct statements, quid

Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Reason (R) are correct statements, brit

Reason (R) is not the correct explanation of the Assertion (A).

C. Assertion (A) is correct, but Reason (R) is incorrect statement.

D. Assertion (A) is incorrect, but Renson (R) is correct statement.

Answer: b

4. Assertion (A): Alkyl halides are prepared by electrophilic halogenation of alkanes.

Reason (R): DDT is a safe insecticide.

A. Both Assertion (A) and Resort (R) are correct statements, quid

Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Reason (R) are correct statements, brit

Reason (R) is not the correct explanation of the Assertion (A).

C. Assertion (A) is correct, but Reason (R) is incorrect statement.

D. Assertion (A) is incorrect, but Renson (R) is correct statement.

Answer: d

5. Assertion (A): Halothane is used as an anaesthetic during surgery.

Reason (R): The deficiency of iodine in our body causes goitre.

A. Both Assertion (A) and Resort (R) are correct statements, quid

Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Reason (R) are correct statements, brit

Reason (R) is not the correct explanation of the Assertion (A).

C. Assertion (A) is correct, but Reason (R) is incorrect statement.

D. Assertion (A) is incorrect, but Renson (R) is correct statement.

Answer: b

View Text Solution

6. Assertion (A): The compounds in which the halogen atom is bounded to an sp^3 hybridised carbon atom adjacent to the carbon-carbon double bond are called vinylic halides.

Reason (R): Common names of alkyl halides are derived by naming the alkyl group followed by the name of the halide.

A. Both Assertion (A) and Resort (R) are correct statements, quid

Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Reason (R) are correct statements, brit

Reason (R) is not the correct explanation of the Assertion (A).

C. Assertion (A) is correct, but Reason (R) is incorrect statement.

D. Assertion (A) is incorrect, but Renson (R) is correct statement.

Answer: d

View Text Solution

7. Assertion (A) : Common name of $CH_3 - CHCl_2$ is ethylidene chloride.

Reason (R) As we go down the group in the Periodic Table, the size of halogen atom decreases.

Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Reason (R) are correct statements, brit

A. Both Assertion (A) and Resort (R) are correct statements, quid

C. Assertion (A) is correct, but Reason (R) is incorrect statement.

Reason (R) is not the correct explanation of the Assertion (A).

D. Assertion (A) is incorrect, but Renson (R) is correct statement.

Answer: c

View Text Solution

- **8.** Assertion (A): The minor product obtained in the reaction between $CH_3CH=CH_2$ and HI is $CH_3CH_2CH_2I$.
- . Reason (R) : Alkyl bromides and iodides develop colour when exposed to light.
 - A. Both Assertion (A) and Resort (R) are correct statements, quid

 Reason (R) is the correct explanation of the Assertion (A).
 - B. Both Assertion (A) and Reason (R) are correct statements, brit
 - C. Assertion (A) is correct, but Reason (R) is incorrect statement.

Reason (R) is not the correct explanation of the Assertion (A).

D. Assertion (A) is incorrect, but Renson (R) is correct statement.

Answer: b

View Text Solution

9. Assertion (A): Boiling points of alkyl halides decreases in the order :

Reason (R): Attractions get stronger as the molecules get bigger in size.

A. Both Assertion (A) and Resort (R) are correct statements, quid

Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Reason (R) are correct statements, brit

Reason (R) is not the correct explanation of the Assertion (A).

- C. Assertion (A) is correct, but Reason (R) is incorrect statement.
- D. Assertion (A) is incorrect, but Renson (R) is correct statement.

Answer: a

View Text Solution

10. Assertion (A): A mixture containing two enantiomers in equal proportions is called a racemic mixture.

Reason (R): Compounds of the type RMgX were discovered by Sandmeyer.

A. Both Assertion (A) and Resort (R) are correct statements, quid

Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Reason (R) are correct statements, brit Reason (R) is not the correct explanation of the Assertion (A).

C. Assertion (A) is correct, but Reason (R) is incorrect statement.

D. Assertion (A) is incorrect, but Renson (R) is correct statement.

Answer: c

View Text Solution

Fill In The Blanks

1. Presence of group at o- and p-positions withdraws the
electron density from the benzene ring.
View Text Solution
2. Fluorides and iodides of hydrocarbons are best prepared by method.
View Text Solution
3. Grignard reagents are highly reactive and react with any source of to give hydrocarbons.
View Text Solution
4. There is some evidence that exposure to carbon tetrachloride causes cancer in humans.

View Text Solution
5. Alkyl halides may be prepared by halogenation of alkanes.
View Text Solution
6. Alkyl halides react with sodium in dry ether to give hydrocarbons
containing the number of carbon atoms present in the halide.
View Text Solution
7. The major use of chloroform today is in the production of the
refrigerant R-22.
View Text Solution

8. The boiling points of organohalogen compounds are comparatively
than corresponding hydrocarbons.
View Text Solution
9. lodoform was earlier used as an antiseptic but the antiseptic
properties are due to the liberation of free and not due to
iodoform itself.
View Text Solution
10. Many species of insects developed resistance to DDT and it was
10. Many species of insects developed resistance to DDT and it was discovered to have a high toxicity towards
discovered to have a high toxicity towards
discovered to have a high toxicity towards

1. A mixture containing two enantiomers in equal proportion is known as racemic mixture.

2. Tertiary halides are the least reactive in $S_N 2$ substitution reactions because bulky groups hinder the approaching nucleophiles.

3. Alkyl halides react with sodium in dry ether to give hydrocarbons.

4. Substitution can take place with alkyl halides by two different mechanisms, S_N1 and S_N2 .

5. The observation by Louis Pasteur that crystals of certain compounds exist in the form of mirror images laid the foundation of modern stereochemistry.

Very Short Answer Questions 1 Mark Each

1. Out of chlorobenzene and benzyl chloride, which one gets easily hydrolysed by aqueous NaOH and why?

2. Write the structure of 1-Bromo-4-chlorobut-2-ene.

3. Out of

wich is an example of allylic halide?

View Text Solution

4. Among the isomers of pentane (C_5H_{12}) , write the one which on photochemical chlorination yields a single monochloride .

5. Out of $CH_3-CH_2-CH_2-Cl$ and $CH_3-CH_2-CH_2-CH_3-CH_3$

which is more reactive towards S_N1 reaction and why?

View Text Solution

6. Write the structure of an isomer of compound C_4H_9Br which is most reactive towards S_N1 reaction.

7. Which of the following reactions is $S_N 1$ type ?

8. Which would undergo $S_N 1$ reaction faster in the following pair ?

$$CH_3-CH_2-CH_2-Br$$
 and $CH_3-CH-CH_3$

9. Which would undergo S_N2 reaction faster in the following pair and why?

11. Identify the chiral molecule in the following pair:

View Text Solution

why?
$$CH_3-CH_2-Br \ \ {
m and} \ \ CH_3-CH_2-I$$

10. Which would undergo S_N2 reaction faster in the following pair and

View Text Solution

 $CH_3 - CH_2 - Br$ and $CH_3 - C - CH_3$

Br

 CH_3

13. Give the IUPAC name of the following compound :

$$CH_2 = C - CH_2Br \ _{CH_3}$$

14. Write the IUPAC name of the following compound:

$$CH_2 = CHCH_2Br$$

15. Write the IUPAC name of the following compound:

 $(CH_3)_3CCH_2Br$

 $\textbf{16.} \ \textbf{Write the structure of the following compound:} \\$

2-(2-Chlorophenyl) -1- iodooctane.

17. A solution of KOH hydrolyses $CH_3CHClCH_2CH_3$ and $CH_3CH_2CH_2CH_2Cl$. Which one of these is more easily hydrolysed ?

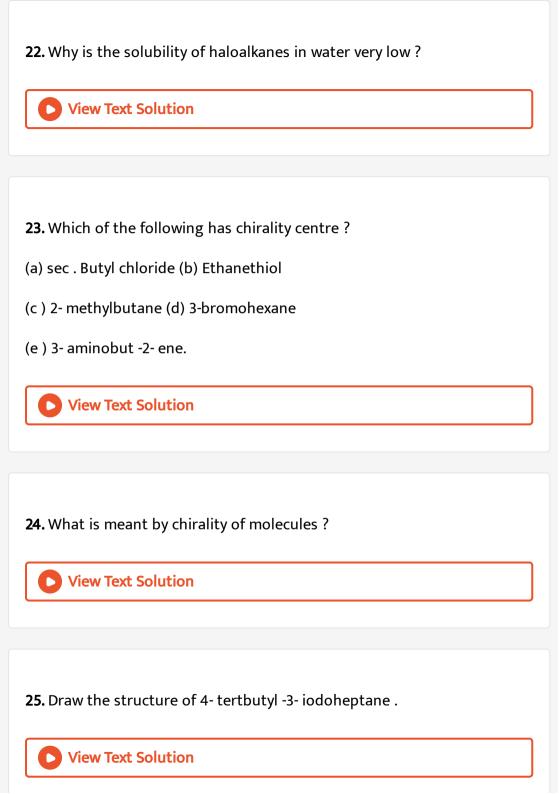
18. In each of the following pairs of organic compounds , identify the compound which will undergo , $S_N {\bf 1}$ reaction faster :

19. Give IUPAC name of the following organic compound:

$$CH_3CH = egin{array}{ccc} C & -CH - CH_3 \ & ert \ & CH_3 & Br \end{array}$$

View Text Solution

- 20. Which of the following compounds (a) and (b) will not react with a mixture of NaBr and H_2SO_4 ?
- (a) $CH_3CH_2CH_2OH$
- (b)


View Text Solution

21. Identify the products A and B formed in the following reaction:

$$CH_3CH_2CH = CH - CH_3 + HCl \rightarrow A + B$$

View Text Solution

26. Which of the following compounds will have the highest melting point and why?

o - dichlorobenzene, m - dichlorobenzene and p - dichlorobenzene.

27. What is the type of hybridisation of carbon in haloarenes?

28. Name a chlorine containing antibiotic.

29. Name an iodine containing hormone.

30. Give the general formula of alkyl halides .

View Text Solution

31. Name the compound (IUPAC) having the following structure:

$$CH_3 - \stackrel{CH_3}{\stackrel{|}{C}}H - CH_2Cl$$

32. Name the catalyst used in the preparation of alkyl halide from primary and secondary alcohol and HCI.

33. What is the major product when propene is treated with HI?

34. Name the product when ethene is treated with Br_2 $\,$ in $\,$ $\,$ CCl_4 $\,$.

35. Alkyl chlorides on treatment with Nal in dry acetone gives alkyl iodides. What is this reaction known as ?

36. Alkyl bromide on treatment with silver fluoride gives alky fluoride.

What is this reaction known as ?

37. Name the reagent used in the conversion of benzene diazonium halide to aryl halide.

		View	Text	Solut	ion
--	--	------	------	-------	-----

38. Out of 1-bromobutane, 2-bromobutane and 2-bromo-2 methylpropane, which has the lowest boiling point ?

39. Certain groups like cyanides and nitrites possess two nucleophilic centres. What are they called ?

40. Which out of CH_3Cl and $(CH_3)_3C-Cl$ on reaction with NaOH gives Snl reaction ?

41. What do we call a mixture containing two enantiomers in equal proportions? **View Text Solution** 42. Who invented compounds like RMgX? View Text Solution 43. Which reaction do we use generally to prepare diphenyl from aryl halide? **View Text Solution** 44. Which compound is formed when chloroform is exposed to air in presence of light? **View Text Solution**

Short Answer Questions 2 Marks Each

1. Allyl cholride can be distinguished from vinyl chloride by NaOH and silver nitrate test.

2. Alkyl halide reacts with lithium aluminium hydride to give alkane. Name the attacking reagent which will bring out this change.

3. Write the structure of major organic product in each of the following reactions :

$$(a)(CH_3)_3CBr+H_2O \stackrel{\mathrm{heat}}{\longrightarrow} (b)CH_3CH_2Cl+SbF_3 \stackrel{\mathrm{heat}}{\longrightarrow}$$

4. What mass of propene is obtained from $34.0~{\rm g}$ of 1- iodopropane on treating with ethanolic KOH , if yield is 36~% ?

5. State one use each of DDT and iodoform.

- **6.** Which compound in the following couples will react faster in $S_N 2$ displacement and why?
- (a) 1-Bromopentane or 2-bromopentane
- (b) 1-Bromo-2-methylbutane or 2-bromo-2-methylbutane.

- **7.** How are the following conversions carried out?
- (i) Benzyl chloride to benzyl alcohol,
- (ii) Methyl magnesium bromide to 2-methylpropan-2-ol.

8. How would you differentiate between $S_N 1$ and $S_N 2$ mechanisms of substitution reactions ? Give one example of each.

9. Write all possible isomers of C_7H_7Cl .

View Text Solution

10. Which one in the following pairs undergoes $S_N \mathbf{1}$ substitution reaction faster and why ?

11. Which ones in the following pairs of substances undergoes $S_N 2$ substitution reaction faster and why?

12. Complete the following reaction equations :

- (i) 📄
- (ii) $CH_3CH_2CH = CH_2 + HBr
 ightarrow$
 - View Text Solution

- 13. Propose mechanism of the reaction taking place when
- (a) (-)-2- Bromooctane reacts with sodium hydroxide to form

- $(\ +\)$ octane -2-ol. (b) 2-Bromopentane is heated with (alc.) KOH to form alkenes.
 - View Text Solution

14. Draw the structures of the optically active unsaturated compound having molecular formula C_5H_9Br , that after addition of H_2 becomes either optically inactive or shows optical activity.

15. Which will have a higher boiling point ? 1-chloroethane or 2-methyl-2-chlorobutane Give reasons:

16. p-nitro chlorobenzene undergoes nucleophilic substitution faster than chlorobenzene.

View Text Solution
17. Explain giving the resonating structures as well.
View Text Solution
18. How may methyl bromide be preferentially converted to methyl

18. How may methyl bromide be preferentially converted to methyl cyanide and methylisocyanide?

19. Write the structure of following compound:

1-Bromo-4-sec-butyl-2-methylbenzene

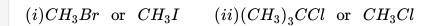
20. How will you bring about the conversion:

Methyl bromide to methyl iodide

21. Explain :

Grignard reagents should be prepared under anhydrous conditions.

22. Explain:


 $C_6H_5CHClCH_3$ is hydrolysed more easily with KOH than $C_6H_5CH_2Cl$.

View Text Solution

 $S_N 2$ reaction with -OH and why?

23. Which compound in each of the following pairs will react faster in

24. Arrange the following compounds in the decreasing order of reactivity towards $S_N 2$ displacement reaction and give reasons in support of your answer:

- (a) $C_2H_5Br,\,C_2H_5I,\,C_2H_5Cl$
- (b) $(CH_3)_3CBr$, $CH_3CH_2CHBrCH_3$, $CH_3CH_2CH_2CH_2Br$.

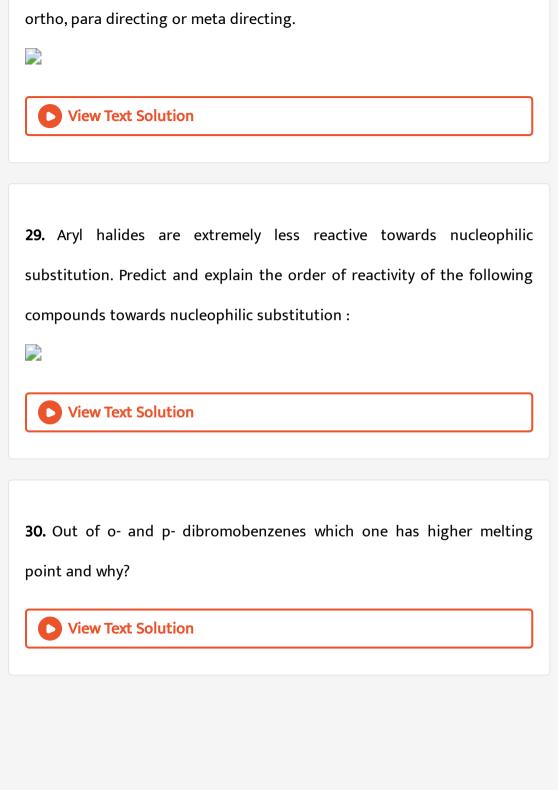
25. An optically active compound having molecular formula $C_7H_{15}Br$ reacts with aqueous KOH to give a racemic mixture of products. Write the mechanism involved for this reaction.

26. Write the formula of main product formed in the following chemical reactions:

$$(i)(CH_3)_2CH-Cl \xrightarrow[ext{dry ether}]{Na} (ii)CH_3Br+AgF \stackrel{\Delta}{\longrightarrow}$$

(iii)
$$CH_3CH_2Br + NaI \xrightarrow[
m acetone]{
m dry}$$

(iv) 📄


View Text Solution

27. Aryl chlorides and bromides can be easily prepared by electrophilic substitution of arenes with chlorine and bromine respectively in the presence of Lewis acid catalysts. But why does preparation of aryl iodides requires presence of an oxidising agent?

View Text Solution

28. Draw other resonance structures related to the following structure and find out whether the functional group present in the molecule is

31. Compound 'A' with molecular formula C_4H_9Br is treated with aq. KOH solution. The rate of this reaction depends upon the concentration of the compound 'A' only. When another optically active isomer 'B' of this compound was treated with aq. KOH solution, the rate of reaction was found to be dependent on concentration of compound and KOH both. (i) Write down the structural formula of both compounds 'A' and 'B'.

(ii) Out of these two compounds, which one will be converted to the

View Text Solution

product with inverted configuration.

32. Write the structure of the major organic product in each of the following reactions:

$$(a)(CH_3)_3CBr+H_2O \stackrel{\mathrm{heat}}{\longrightarrow}$$

$$(b)(CH_3)_2CH-CH(Br)CH_2CH_3 \stackrel{C_2H_5ONa}{=\operatorname{cthanol}/\operatorname{hea}}$$

$$(c)CH_3CH_2Cl + SbF_3 \stackrel{\mathrm{heat}}{\longrightarrow}$$

$$(d)CH_2 = CHCH_2Br + CH_3C \equiv CNa \stackrel{ ext{liq.}NH_3}{\longrightarrow}$$

View Text Solution

33. Explain as to why haloarenes are much less reactive than haloalkenes towards nucleophilic substitution reactions.

View Text Solution

34. Cyanide ion acts as an ambident nucleophile. From which end it acts as a stronger nucleophile in aqueous medium? Give reason for your answer.

35. Why are haloalkanes more reactive towards nucleophilic substitution reaction than haloarenes?

36. Which of the following two substances undergo Syl reaction faster and why?

37. Why are haloarenes more stable than haloalkanes and undergo electrophilic substitution reaction at ortho and para-positions?

38. Complete the following reaction equations :

- (i) $C_6H_5N_2Cl+KI
 ightarrow$
- (ii) 📄

39. Identify and indicate the presence of centre of chirality, if any, in the following molecules. How many stereoisomers are possible for those containing chiral centre?

(i) 1, 2 dichloropropane (ii) 3-bromo -pent -1-ene

Long Answer Questions I 3 Marks Each

1. Identify the chiral molecule in the following pair :

2. Write the structure of the product when chlorobenzene is treated with methyl chloride in the presence of sodium metal and dry ether.

3. Write the structure of the alkene formed by dehydrohalogenation of 1-bromo-1methylcyclohexane with alcoholic KOH.

View Text Solution

- **4.** Following compounds are given to you:
- 2-Bromopentane, 2-Bromo-2-methylbutane, 1-Bromopentane
- (i) Write the compound which is most reactive towards $S_{N}2$ reaction.
- (ii) Write the compound which is optically active.
- (iii) Write the compound which is most reactive towards β -elimination reaction.

View Text Solution

5. Draw the structures of the major monohalo product for each of the following reactions :

6. Give reasons:

C-Cl bond length in chlorobenzene is shorter than C -- Cl bond length in

 $CH_3 - Cl$.

View Text Solution

7. Give reasons:

The dipole moment of chlorobenzene is lower than that of cyclohexyl chloride.

View Text Solution

8. Give reasons:

 $S_N 1$ reactions are accompanied by recemisation in optically active alkyl halides.

M ICXL DOIUTION

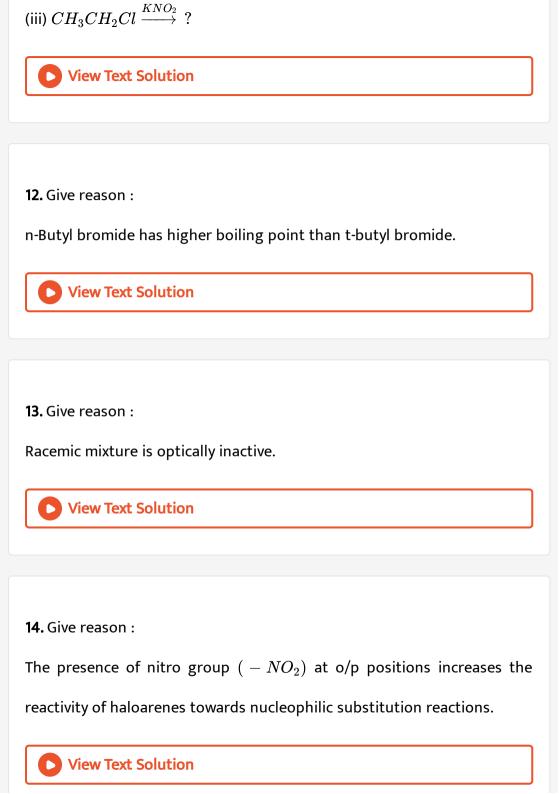
9. How do you convert:

- (i) Chlorobenzene to biphenyl
- (ii) Propene to 1-iodopropane
- (iii) 2-bromobutane to but-2-ene.

View Text Solution

10. Write the major product(s) in the following:

(ii)
$$2CH_3 - CH - CH_3 \xrightarrow[Cl]{Na} \stackrel{Na}{ ext{dry ether}}$$


(iii)
$$CH_3-CH_2-Br \stackrel{
m AgCN}{\longrightarrow}$$

View Text Solution

11. Write the major product(s) in the following reactions:

15. How can the following conversions be carried out:
(i) Aniline to bromobenzene
(ii) Chlorobenzene to 2-chloroacetophenone
(iii) Chloroethane to butane
View Text Solution
16. Why are alkyl halides insoluble in water? View Text Solution
17. Why is Butan-1-ol optically inactive but Butan-2-ol is optically active?
View Text Solution

18. Although chlorine is an electron withdrawing group, yet it is ortho, para directing in electrophilic aromatic substitution reactions. Why?

- 19. What happens when
- (i) chlorobenzene is treated with $Cl_2 \, / \, FeCl_3$,
- (ii) ethyl chloride is treated with $AgNO_2$.
- (iii) 2-bromopentane is treated with alcoholic KOH?

Write the chemical equations in support of your answer.

20. Draw the structure of major monohalogen product in each of the following reactions :

View Text Solution

21. Draw the structures of major monohalogen products in each of the following reactions :

22. Which halogen compound in each of the following pairs will react faster in $S_N 2$ reaction :

$$(i)CH_3Br$$
 or CH_3I $(ii)(CH_3)_3C-Cl$ or CH_3-Cl

- 23. Give reasons for the following:
- (i) Ethyl iodide undergoes $S_N 2$ reaction faster than ethyl bromide.
- (ii) (\pm) 2-Butanol is optically active.
- (iii) C X bond length in halobenzene is smaller than C X bond length in

 $CH_3 - X$.

View Text Solution

24. Answer the following questions :

- (i) What is meant by chirality of a compound? Give an example.
- (ii) Which one of the following compounds is more easily hydrolysed by

KOH and why?

 $CH_3CHClCH_2CH_3$ or $CH_3CH_2CH_2Cl$

(iii) Which one undergoes $S_{N}2$ substitution reaction faster and why?

- **25.** Rearrange the compounds of each of the following sets in order of reactivity towards $S_N 2$ displacement :
- (i) 2-Bromo-2-methylbutane, 1-Bromopentane, 2 Bromopentane
- (ii) 1-Bromo-3-methylbutane, 2-Bromo-2 methylbutane, 3-Bromo-2-

methylbutane

methylbutane

(iii) 1-Bromobutane, 1-Bromo-2, 2-dimethylpropane, 1-Bromo-2-

26. Answer the following :

- (i) Haloalkanes easily dissolve in organic solvents, why?
- (ii) What is known as a racemic mixture ? Give an example.
- (iii) Of the two bromoderivatives,

more

 $C_6H_5CH(CH_3)Br$ and $C_6H_5CH(C_6H_5)Br$, which one is

reactive in $S_N \mathbf{1}$ substitution reaction and why?

27. Which one of the two compounds, CH_3Br and CH_3I , will react faster in an S_N2 reaction with — OH ?

- **28.** Write the structures of the major products in the following reactions :
- $(i)CH_{3}CH=C(CH_{3})_{2}+HBr
 ightarrow(ii)C_{6}H_{5}ONa+C_{2}H_{5}Cl
 ightarrow$

29. Account for following:

Chloromethane reacts with KCN to form ethane nitrile as main product and with AqCN to form methyl isocyanide as chief product.

30. Account for following:

Use of DDT was banned in United States in 1973.

31. Account for following:

Benzylic halides show high reactivity towards $S_N 1$ reaction.

32. Some alkyl halides undergo substitution reaction whereas some undergo elimination reaction on treatment with bases. Discuss the structural features of alkyl halides with the help of examples which are responsible for this difference.

View Text Solution

33. Draw the structures of all the eight structural isomers that have the molecular formula $C_5H_{11}Br.$

Name each isomer according to IUPAC system and classify them as primary, secondary and tertiary bromide.

View Text Solution

34. Arrange the following compounds in increasing order of $S_N \mathbf{1}$ reactivity.

 $(i)ClCH_2CH = CHCH_2CH_3$,

 $CH_3C(Cl) = CHCH_2CH_3$,

$$CH_3CH = CHCH_2CH_2Cl$$
,

$$CH_3CH = CHCH(Cl)CH_3$$

(ii)
$$CH_3CH_2Br$$
, $CH_2 = CHCH(Br)CH_3$,

$$CH_2 = CHBr, CH_3CH(Br)CH_3$$

(iii)
$$(CH_3)_3CCl$$
, $C_6H_5C(CH_3)_2Cl$,

$$(CH_3)_2CHCl, CH_3CH_2CH_2Cl$$

View Text Solution

35. Write IUPAC names of the following:

36. Explain why

- (i) vinyl chloride is unreactive to nucleophilic substitution reactions.
- (ii) neo-Pentyl bromide undergoes nucleophilic substitution reaction very slowly.

(iii) 3 - Bromocyclohexene is more reactive than 4-bromo cyclohexene in hydrolysis with aqueous NaOH.

37. p-methoxylbenzyl bromide reacts faster than p-nitrobenzyl bromide with ethanol to form an ether product. Explain, why?

38. Give the IUPAC name of the product formed when: (1) 2 -Methyl-1-bromopropane is treated with sodium in the presence of dry ether.

- (ii) 1-Methyl cyclohexene is treated with HI.
- (iii) Chloroethane is treated with silver nitrite.

Self Assessment Test Section A

- 1. In benzylic and vinylic halides the halogen bearing carbons are
 - A. both sp^3 hybridised.
 - B. both sp^2 hybridised .
 - C. sp^3 and sp^2 hybridised respectively.
 - D. sp^2 and sp^3 hybridised respectively.

Answer: c

View Text Solution

- 2. Boiling points of the alkyl halides decrease in the order:
 - A. RI > RBr > RVl > RF
 - $\mathrm{B.}\,RF>RCl>RBr>RI$
 - $\mathsf{C}.\,RI > RBr > RF > RCl$
 - $\mathrm{D.}\,RI>RVl>RBr>RF$

Answer: a

View Text Solution

3. Which of the following reagent can be used to prepare alkyl halides from alcohols?

A. $SOCl_2$

B. Red P/X_2

C. $ZnCl_2$

D. All the above

Answer: d

View Text Solution

4. Aniline was treated with $NaNO_2/HX$ at 273-278K and the product obtained was treated with Cu_2X_2 . The final product obtained is

A. phenol B. nitrobenzene C. phenyl halide D. sodium phenoixde Answer: c **View Text Solution** 5. Chlorobenzene on treatment with sodium in ether gives diphenyl. This reaction is known as A. Wurtz-Fitting reaction . B. Fittig's reaction. C. Wurtz reaction. D. Friedel-Crafts reaction. Answer: b

6. Assertion (A): Dichloromethane is used as a solvent and as a paint-remover.

Reason (R): Carbon tetrachloride was earlier used as an antiseptic.

A. Both Assertion (A) and Rersou (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Renson (R) are correct statements, but Renson (R) is not the correct explanation of the Assertion (A).

C. Assertion (A) is correct, but Renson (R) is incorrect statement.

D. Assertion (A) is incorrect, but Reason (R) is correct statement.

Answer: c

View Text Solution

7. Assertion (A): DDT as an insecticide is still being used worldwide on a large scale as a safe treatment.

Reason (R): Carbon tetrachloride has been found to be responsible for depletion of ozone layer.

A. Both Assertion (A) and Rersou (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).

B. Both Assertion (A) and Renson (R) are correct statements, but Renson (R) is not the correct explanation of the Assertion (A).

C. Assertion (A) is correct, but Renson (R) is incorrect statement.

D. Assertion (A) is incorrect, but Reason (R) is correct statement.

Answer: d

View Text Solution

Self Assessment Test Section B

1. What mass of propene is obtained from $34.0\ \mathrm{g}$ of 1- iodopropane on treating with ethanolic KOH, if the yield is $36\,\%\,$?

