# ©゙ doubtnut India's Number 1 Education App 

## CHEMISTRY

## BOOKS - NAGEEN CHEMISTRY (ENGLISH)

## CHEMICAL THERMODYNAMICS

## Example

1. State whether each of the following will increase or decrease the total energy content of the system.
heat transferred to the surroundings.

## - Watch Video Solution

2. State whether each of the following will increase or decrease the total
energy content of the system.

Work done by the system.

## - Watch Video Solution

3. State whether each of the following will increase or decrease the total energy content of the system.

Work done on the system.

## - Watch Video Solution

4. Heat transferred from surroundings to the system will increase or decrease the total energy content of the system.

## - Watch Video Solution

5. A system absorbs 400 J of heat and does work equivalent to 150 J on the surroundings. Calculate the change in the internal energy of the system.

## - Watch Video Solution

6. A gas expands against a constant pressure of 1 atm from a volume of 5 L to 10 L . During the process, system absorbs 400 J of heat from the surroundings. Calculate the change in the internal energy of the system.

## - Watch Video Solution

7. A 5.0 litres cylinder contained 10 moles of hydrogen gas at $27^{\circ} \mathrm{C}$. Due to leakage, entire gas escaped into the atmosphere. The atmospheric pressure is 1.0 atm. Calculate the work done by the gas assuming hydrogen to be an ideal gas.

## - Watch Video Solution

8. The enthalpy change $(\Delta H)$ for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
is -92.38 kJ at 298 K . What is $\Delta U$ at $298 \mathrm{~K} ?\left(R=8.314 j \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$

## - Watch Video Solution

9. The difference between heats of reaction at constant pressure and constant volume for the reaction,
$2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
at $25^{\circ} \mathrm{C}$ in kJ is

## - Watch Video Solution

10. The heat of combustion of methane $\mathrm{CH}_{4}(\mathrm{~g})$ is measured in a bomb calorimeter at 298.2 K and is found to be $-885.50 \mathrm{kJmol}^{-1}$. Find the value of enthalpy change $\Delta \mathrm{H}$.

## - Watch Video Solution

11. 0.16 g of methane was subjected to combustion at $27^{\circ} \mathrm{C}$ in a bomb calorimeter. The temperature of the calorimeter system (including water) was found to rise by $0.5^{\circ} \mathrm{C}$. Calculate the heat of combustion of methane (i) at constant volume and (ii) at constant pressure. The thermal capacity of the calorimeter system is $17.7 \mathrm{kJK}^{-1}\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.

## - Watch Video Solution

12. 10 moles of a gas are heated at constant volume from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. Calculate the change in the internal energy of the gas. The molar heat capacity of the gas at constant pressure, $C_{p}=6.82 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$ and $R=1.987 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$.

## - Watch Video Solution

13. A gas expands from $3 d m^{3}$ to $5 d m^{3}$ against a constant pressure of 3.0 atm. The work done during expansion is used to heat 10 moles of water at temperature 290 K. Calculate the final temperature of water. Specific heat of water $=4.184 \mathrm{JK}^{-1} \mathrm{~g}^{-1}$.

## - Watch Video Solution

14. The enthalpy change for the transition of liquid water to steam $\Delta_{\text {vap }} H$ is $40.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $100^{\circ} \mathrm{C}$. Calculate the entropy change ( $\Delta_{\text {vap }} S$ ) for the process.

## - Watch Video Solution

15. What will be the melting point of KCl if enthalpy change for the reaction is $7.25 \mathrm{~J} \mathrm{~mol}^{-1}$ and entropy change is $0.007 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ ?

## - Watch Video Solution

16. Calculate the entropy change ( $\Delta S$ ) for the following reaction at $25^{\circ} C$.
$\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{3}(g)$
The absolute entropies at $25^{\circ} \mathrm{C}$ and 1 atm pressure for $S O_{2}(g), O_{2}(g)$ and $S O_{3}(g)$ are 248.5, 205.0 and $256.2 \mathrm{~J} \mathrm{~K}^{\wedge}(-1) \mathrm{mol}^{\wedge}(-1)^{\wedge}$ respectively.

## - Watch Video Solution

17.1 mole of $\alpha$-tin at 1 atm and $13^{\circ} \mathrm{C}$ changes to 1 mole of $\beta$-tin at 1 atm and $13^{\circ} \mathrm{C}$. If the enthalpy of transition is $2090 \mathrm{Jmol}^{-1}$, calculate the entropy of transition.

## - Watch Video Solution

18. For the reaction, $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{3}(g)+\mathrm{HCl}(g)$ at $25^{\circ} \mathrm{C}$, enthalpy change $\Delta H=+177 \mathrm{kJmol}^{-1}$ and entropy change
$\Delta S=+285 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. Calculate the free energy change $\Delta G$ at $25^{\circ} C$ and predict whether the reaction is spontaneous or not.

## - Watch Video Solution

19. At $0^{\circ} \mathrm{C}$, ice and water are in equilibrium and $\Delta H=6.0 \mathrm{kJmol}^{-1}$ for the process
$\mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(l)$
What will be $\Delta S$ and $\Delta G$ for the conversion of ice to liquid water?

## - Watch Video Solution

20. The enthalpy change $(\Delta H)$ for the reaction
$\mathrm{Ag}_{2} \mathrm{O}(s) \Leftrightarrow 2 \mathrm{Ag}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g)$
is $30.54 \mathrm{kJmol}^{-1}$ and entropy change $(\Delta S)$ is $0.06 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$ at 1 atm. Calculate the temperature at which $\Delta G$ is equal to zero. Also predict the direction of reaction at a temperature below the calculated temperature.
21. For a reaction, $K_{p}=1.8 \times 10^{-7}$ at 300 K . What is the value of $\Delta G^{\circ}$ at this temeprature ?

$$
\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
$$

## - Watch Video Solution

22. Calculate the standard free energy change for the following reaction
$Z n(s)+C u^{2+}(a q) \rightarrow Z n^{2+}(a q)+C u(s)$
Given : $\Delta_{f} G^{\circ}\left[\mathrm{Cu}^{2+}(a q)\right]=65.0 \mathrm{kJmol}^{-1}$
$\Delta_{f} G^{\circ}\left[Z^{2+}(a q)\right]=-147.2 k$ Jmol $^{-1}$

## - Watch Video Solution

23. Calculate the equilibrium constant for the following reaction at 298

K:
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Given : $\Delta_{f} G^{\circ}\left[H_{2} O(l)\right]=-273.2 \mathrm{kJmol}^{-1} R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$.

## - Watch Video Solution

24. Calculate the enthalpy change for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
if the bond energies of $H-H, O=O$ and $O-H$ bonds are 104, 118 and $11 \mathrm{kcal}^{\mathrm{mol}}{ }^{\wedge}(-1)^{\wedge}$ respectivley.

## (D) Watch Video Solution

25. Calculate the standard enthalpy change for the reaction
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$,
given that the standard heatds of formation of $\mathrm{CH}_{4}\left(g, \mathrm{CO}_{2}(g)\right.$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are
$-74.91 \mathrm{~mol}^{-1},-394.12 \mathrm{kJmol}^{-1}$ and $-286.31 \mathrm{kJmol}^{-1}$
respectivley.
26. Calculate the standard heat of formation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$ from the following data:
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$,
$\Delta H^{\circ}=-1366.5 k J$
(b) $\Delta_{f} H^{\circ}\left[\mathrm{CO}_{2}\right]=-393.5 \mathrm{kJmol}^{-1}$,
$\Delta_{f} H^{\circ}\left[H_{2} O(l)\right]=-285.5 \mathrm{kmol}^{-1}$.

## - Watch Video Solution

27. Calculate the calorific value of methane if it burns according to the equation
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-890.0 \mathrm{~kJ}$

- Watch Video Solution

28. An average person eats carbohydrates equivalent to 0.350 kg of glucose and 0.200 kg of fats every day. The person needs about 10000 kJ per day. If the body consumes carbohydrates preferentially, how much will his weight increase per year assuming that only $50 \%$ of the excess fats are excreted. Give that the heat of combustion of glucose is 2900 kJ and combustion of fats produces energy equivalent to $39000 \mathrm{kJkg}^{-1}$ ?

## Watch Video Solution

29. Calculate $\mathrm{G}^{\circ}$ for conversion of oxygen to ozone $3 / 2 \mathrm{O} 2 \rightleftharpoons \mathrm{O} 3(\mathrm{~g})$ at 298 Kp , if K for this conversion is $2.47 \times 10-29$ in standard pressure units.

## - Watch Video Solution

30. What would be the heat released when 0.5 mole of HCl in solution is neutralised by 0.25 mole of KOH ?
31. What would be the heat released when 0.6 mole of $\mathrm{HNO}_{3}$ in solution is mixed with 0.4 mole of NaOH ?

## - Watch Video Solution

32. What would be the heat released when $250 \mathrm{~cm}^{3}$ of 0.1 M HCl solution is mixed with $300 \mathrm{~cm}^{3}$ of 0.1 M of NaOH solution?

## - Watch Video Solution

33. What would be the heat released when $200 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is mixed with $150 \mathrm{~cm}^{3}$ of 0.2 M KOH solution ?
34. Calculate the heat of formation of glucose from the following data, $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-395.0 k J$
$\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-269.4 k J$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-2900 \mathrm{~kJ}$

## - Watch Video Solution

35. The molar heats of combustion of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}), \mathrm{C}$ (graphite), and $\mathrm{H}_{2}$ are $-310.62 \mathrm{kcal},-94.05 \mathrm{kcal}$ and -68.32 kcal respectively. Calculate the standard heat of formation of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$.

## - Watch Video Solution

36. Calculate the heat of the following reaction at $25^{\circ} \mathrm{C}$.
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
The heats of combustion of ethylene, hydrogen and ethane are-1410 kJ,
-286.2 kJ and -1560.6 kJ respectively at $25^{\circ} \mathrm{C}$.
37. Calculate the heat of formation of anhydrous $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ from the following data:
(i) $2 \mathrm{Al}+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}(a q)+3 \mathrm{H}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-239.76 \mathrm{kcal}$
(ii) $A l_{2} C l_{6}(s)+a q \rightarrow A l_{2} C l_{6}(a q), \Delta H=-153.69 \mathrm{kcal}$
(iii) $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g), \Delta H=-44 k c a l$
(iv) $\mathrm{HCl}(\mathrm{g})+a q \rightarrow \mathrm{HCl}(a q), \Delta H=-17.31 \mathrm{kcal}$

## - Watch Video Solution

38. Calculate the $\mathrm{C}-\mathrm{C}$ bond energy from the following data:

2 C (graphite) $+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} H_{6}(\mathrm{~g}), \Delta H=-84.67 \mathrm{~kJ}$
$C$ (graphite),$\rightarrow C(g) \Delta H=716.7 \mathrm{~kJ}$
$\mathrm{H}_{2}(9 g), \rightarrow 2 \mathrm{H}(\mathrm{g}) \Delta=435.9 \mathrm{~kJ}$
Assume 416 as the C-H bond energy.

- Watch Video Solution

39. Calculate the enthalpy of the following reaction :
$\mathrm{CH}_{2}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}(\mathrm{~g})$
The bond energies of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}$ and $\mathrm{H}-\mathrm{H}$ bonds are 414, 347, 615 and $435 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

## - Watch Video Solution

## Review Exercises

1. Define thermodynamics. Describe the significance and limitations of thermodynamics.

## - Watch Video Solution

2. What do you understand by the terms system and surroundings?

Discuss with examples the various types of systems.
3. Define State variables.

## - Watch Video Solution

4. Define State of a system.

## - Watch Video Solution

5. Define Intensive properties.

## - Watch Video Solution

6. Define Extensive properties.
7. What type of systes are the following system?

Hot tea placed in a cup.

## - Watch Video Solution

8. What type of systes are the following system?

Hot tea placed in a sealed metallic tea pot.

## - Watch Video Solution

9. What type of systes are the following system?

Hot tea placed in a thermos flask.

## - Watch Video Solution

10. The equilibrium constant at 298 K for the reaction $\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}+(\mathrm{aq})$
$\rightleftharpoons \mathrm{Cu} 2+(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$ is $2.0 \times 1015$. The concentrations of $\mathrm{Cu} 2+$ and $\mathrm{Ag}+$
ions are $1.8 \times 10-2 \mathrm{~mol} \mathrm{~L}-1$ and $3.0 \times 10-19 \mathrm{~mol} \mathrm{~L}-1$ respectively. Is this reaction at equilibrium?

## - Watch Video Solution

11. Define heat and work.

## - Watch Video Solution

12. What do you mean by saying that the work done by a system is a path function?"

## - Watch Video Solution

13. Assign the proper sign to q and w in the following cases :

A system transfers 10 kJ of energy to the surroundings.
14. Assign the proper sign to $q$ and $w$ in the following cases :

Surroundings transfer 25 kJ of energy to the system.

## - Watch Video Solution

15. Assign the proper sign to $q$ and $w$ in the following cases :

15 kJ of energy is transferred to the system by doing work on it.

## - Watch Video Solution

16. Assign the proper sign to $q$ and $w$ in the following cases :

30 kJ of energy is lost by the system on account of the work done by the system on the surroundings.

## - Watch Video Solution

17. What do you understand by pressure-volume work? Derive an expression for it.

## - Watch Video Solution

18. Caclulate DeltaU, internal enegry change of a system, if it absorbs 25 kJ of heat and does 5 kJ of work.

## - Watch Video Solution

19. A system absorbs 20 kJ heat and also does 10 kJ of work. The net internal enegry of the system

## - Watch Video Solution

20. Predict the mode of energy transference in the following processe.
(i) Cooking of food
(ii) Photosynthesis
(iii) Setting a cracker to fire.

## Watch Video Solution

21. What is the mode of transference of energy when one plays on a piano?

## - Watch Video Solution

22. Sort out the intensive and extensive properties among the following: volume, pressure, mass, density, refractive index.

## - Watch Video Solution

23. Classify the following into open, closed and isolated system.

Boiling of milk in a pan.
24. Classify the following into open, closed and isolated system. Boiling tea kept in a thermos.

## - Watch Video Solution

25. Classify the following into open, closed and isolated system.

Hot food kept in a sealed metallic container.

## - Watch Video Solution

26. Explain first law of thermodynamics. What'is its physical significance?

## - Watch Video Solution

27. Define internal energy and enthalpy of a system.
28. Why is the enthalpy considered more useful than internal energy in chemical reactions?

## - Watch Video Solution

29. Derive the following equation :
$\Delta H=\Delta U+(\Delta n) R T$

## - Watch Video Solution

30. One mole of an ideal gas is expanded from a volume of 3 L to 5 L under a constant pressure of 1 atm . Calculate the work done by the gas.

## - Watch Video Solution

31. During a process, a system absorbs 710 kJ of heat and does 250 J of work. Calculate the change in the internal energy of the system.

## - Watch Video Solution

32. Two moles of an ideal gas at 2 atm and $25^{\circ} \mathrm{C}$ are compressed isothermally to one third of its volume by an external pressure of 6 atm.

Calculate $\mathrm{q}, \mathrm{w}$ and $\Delta U$.

## - Watch Video Solution

33. A system has internal energy $U_{1}$. If 500 J of heat is supplied to it and at the same time it does 300 J of work. Calculate the internal energy of the system in the new state,

## - Watch Video Solution

34. Heat of combustion of $\mathrm{CH}_{4}(\mathrm{~g})$ at constant volume and at 298 K has been found to be $-885 \mathrm{kJmol}^{-1}$, calculate the enthalpy of its combustion under constant pressure condition ( $R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ).

## - Watch Video Solution

35. When 2 g of benzene are burnt in a bomb calorimeter, the heat produced is 83.6 kJ at 298 K . Calculate the enthalpy of combustion of benzene.

## - Watch Video Solution

36. The enthalpy change $(\Delta H)$ of the reaction at 298 K

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)
$$

is found to be -326.7 kcal. Calculate $\Delta E$ for the given reaction.
37. $400 \mathrm{~cm}^{3}$ of a gas are compressed to half of its volume by applying a pressure of 0.5 atm . During the process 6.5 J of heat flows out to the surroundings. Calculate $\Delta U$ of the system.

## - Watch Video Solution

38. Calculate the work done ( w ) and internal energy change ( $\Delta U$ ), when one mole of water at $100^{\circ} \mathrm{C}$ vaporises against an atmospheric pressure of 1 atm assuming ideal gas behaviour. Heat of vapourisation of water at $100^{\circ} \mathrm{C}$ is $1020 \mathrm{calmol}^{-1}$.

## - Watch Video Solution

39. Calculate the work done in calories when 5 moles of an ideal gas are compressed isothermally and reversibly from a pressure of 1.5 atm to 15 atm at $27^{\circ} \mathrm{C}$.
40. In a reaction 2.5 KJ of heat is released from the system and 5.5 KJ of work is done on the system.Calculate 'DeltaU'.

## - Watch Video Solution

41. Define specific heat capacity and molar heat capacity of a substance.

## - Watch Video Solution

42. Prove that $C_{p}-C_{v}=R$.

## - Watch Video Solution

43. What do you understand by $C_{p}$ and $C_{v}$ ?
44. Establish a relationship between $C_{v}$ and $C_{p}$ ?

## - Watch Video Solution

45. Define the term 'entropy'. How does $T \Delta S$ determine the spontaneity of a process?

## - Watch Video Solution

46. What is meant by the term 'free energy'? What was the necessity of introducing such a function ?

## - Watch Video Solution

47. State the second law of thermodynamics. Predict the sign of $\Delta S$ in the following change at constant temperature and pressure. Give reason
in support of your answer.

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

## - Watch Video Solution

48. State and explain the second law of thermodynamics. Mention the essential conditions for the spontaneity of a chemical reaction.

## - Watch Video Solution

49. What inferences do you draw on the basis of the values of Gibbs free energy change? How is it related to the enthalpy and entropy changes of a system at constant temperature and pressure?

## - Watch Video Solution

50. The enthalpy change for the transition of liquid water to steam
$\Delta_{\text {vap }} \mathrm{H}$ is $40.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $100^{\circ} \mathrm{C}$. Calculate the entropy change
( $\Delta_{\text {vap }} S$ ) for the process.

## - Watch Video Solution

51. At 373 K , the entropy change for the transition of liquid water to steam ( $\Delta S_{\text {vap }}$ ) is $109 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Calculate the enthalpy change ( $\Delta_{\text {vap }} H$ ) for the process.

## - Watch Video Solution

52. For the chemical equilibrium
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ at $298 K, K_{c}=1.8 \times 10^{-7}$.
Calculate $\Delta_{r} G^{\Theta}$ for the forward reaction $R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

## - Watch Video Solution

53. For a reaction, $K=1.958 \times 10^{-4}$ at 400 K , what is the value of
$\Delta G^{\circ}$ at this temepratuure $?\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.

## - Watch Video Solution

54. Calculate $\Delta G^{\circ}$ for the reaction
$2 \mathrm{HCl}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$
at Given : $\Delta_{f} G^{\circ}[H C l(g)]=-95.30 \mathrm{kJmol}^{-1}$.
$\Delta_{f} G^{\circ}[H F(g)]=-273 \mathrm{kJmol}^{-1}$. Also calculate the equilibrium constant the reacton at $25^{\circ} \mathrm{C}$. Given, gas constant $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

## - Watch Video Solution

55. Calculate the equilibrium constant for the following reaction at 298 K and 1 atm pressure. $\mathrm{C}($ graphite $)+\mathrm{H} 2 \mathrm{O}(\mathrm{I})=\mathrm{CO}(\mathrm{g})+\mathrm{H} 2(\mathrm{~g})$

Given : 'Delta_f $\mathrm{H}^{\wedge} @$, [H_2O (I)] = -286.0 kJ mol^(-1), Delta_f $\mathrm{H}^{\wedge} @[\mathrm{CO}(\mathrm{g})]$ $=\quad-\quad 110.5 \quad \mathrm{~kJ} \quad \mathrm{~mol}^{\wedge}(-1)$, DeltaS^@ at 298 Kf or thereaction $=252.6 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$. Gas constant $R=8.31 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$.
56. Calculate the equilibrium constant for the following reaction at 298 K and 1 atm pressure. $\mathrm{C}($ graphite $)+\mathrm{H} 2 \mathrm{O}(\mathrm{I})=\mathrm{CO}(\mathrm{g})+\mathrm{H} 2(\mathrm{~g})$
Given : 'Delta_f $\mathrm{H}^{\wedge}$ @ , [H_2O (I)] = $-286.0 \mathrm{~kJ} \mathrm{~mol}{ }^{\wedge}(-1)$, Delta_f $\mathrm{H}^{\wedge} @[\mathrm{CO}(\mathrm{g})]$
$=\quad-\quad 110.5$
at 298 Kf or thereaction $=252.6 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1} . \quad$ Gas constant
$R=8.31 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$.

## - Watch Video Solution

57. Calculate the standard free energy change for the reaction
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Given that the standard free energy of formation $\left(\Delta_{f} G^{\circ}\right)$ for $\mathrm{NH}_{3}(g) N O(g)$ and $H_{2} O(l)$ are -16.8, +86.7 and $-237.2 \mathrm{kJmol}^{-1}$ respectively. Predict the feasibility of the above reaction at the standard state.
58. Calculate the standard entropy change for the reaction $X \Leftrightarrow Y$ if the value of $\Delta H^{\circ}=28.40 \mathrm{~kJ}$ and equilibirum constant is $1.8 \times 10^{-7}$ at 298 K.

## - Watch Video Solution

59. Calculate the entropy change when 20.0 g of ice changes to liquid water at $0^{\circ} \mathrm{C}$. The heat of fusion is $80.0 \mathrm{calg}^{-1}$.

## - Watch Video Solution

60. From the following values of $\Delta H$ and $\Delta S$, decide whether or not these reaction are feasible at 298 K .

Reaction A : $\Delta H=-10.5 \times 10^{3} \mathrm{Jmol}^{-1}, \Delta S=+31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Reaction B : $\Delta H=-11.7 \times 10^{3} \mathrm{Jmol}^{-1}, \Delta S=-105 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
61. Determine standard free energy $\Delta G^{\circ}$ at $25^{\circ} C$ for the reaction

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)
$$

Given: $\Delta H^{\circ}=-91.8 k J, \Delta S^{\circ}=-198 J K^{-1}$

## - Watch Video Solution

62. For a hypothetical reaction $n X \rightarrow m Y$, the value of $\Delta H=-133 k J$ and $\Delta S=-145 J K^{-1}$. Calcualte the value of $\Delta G$ at 700 K .

## - Watch Video Solution

63. For a hypothetical reaction $n X \rightarrow m Y$, the value of $\Delta H=-133 k J$ and $\Delta S=-145 J K^{-1}$. Calcualte value of
$\Delta S_{\text {surr. }}$ and $\Delta S_{\text {univ }}$

## - Watch Video Solution

64. Compute the standard free energy of the reaction at $27^{\circ} C$ for the combustion of methane

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

using the following data :

| Species | $\mathrm{CH}_{4}(\mathrm{~g})$ | $\mathrm{O}_{2}(\mathrm{~g})$ | $\mathrm{CO}_{2}(\mathrm{~g})$ | $\mathrm{H}_{2} \mathrm{O}(\mathrm{f})$ |
| :--- | :--- | :--- | :--- | :--- |
| $\Delta \mathrm{H}^{-}\left(\mathrm{k} \mathrm{mol}^{-1}\right)$ | -74.8 | - | -393.5 | -285.8 |
| $\left.\mathrm{~s}^{*} 0 \mathrm{KK}^{-1} \mathrm{~mol}^{-1}\right)$ | 186 | 205 | 214 | 70 |

Also comment on the feasibility of the reaction.

## - Watch Video Solution

65. The reaction
$\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)$
was carried out at $27^{\circ} \mathrm{C}$ by taking one mole each of the reactants. The reaction reached equilibrium when $2 / 3$ rd of the reactants were consumed. Calculate the free energy change for the reaction.
66. A system loses 120 ) of heat and does 80 J of work. Calculate the change in the internal energy of the system.

## - Watch Video Solution

67. Calculate the enthalpy change for the reaction
$\mathrm{CH}_{2}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}\left(\mathrm{~g} 0 \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}(\mathrm{~g})\right.$.
The bond energies of $C-C, C-H, H-H$ and C $=\mathrm{C}$ bonds are 83 kcal, 99 kcal 104 kcal and 145 kcal respectivley.

## - Watch Video Solution

68. Sort out the exothermic and endothermic reactions among the following:
(i) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}), \Delta H=-17.89 \mathrm{cal}$
(ii) $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)=+284.5 k J$
(iii) $2 H C l(g) \rightarrow 2 H(g)+2 C l(g), \Delta H=+857 k J$
(iv) $\mathrm{Cl}_{2}(g)+242 k J \rightarrow 2 C l(g)$

## - Watch Video Solution

69. Calculate the standard enthalpy change for the reaction
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$,
given that the standard heatds of formation of
$\mathrm{CH}_{4}\left(g, \mathrm{CO}_{2}(g)\right.$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad$ are
$-74.91 \mathrm{~mol}^{-1},-394.12 \mathrm{kJmol}^{-1}$ and $-286.31 \mathrm{kJmol}^{-1}$
respectivley.

## - Watch Video Solution

70. Calculate the standard heat of formation of propane if its heat of combustion is $-2220.2 \mathrm{kjmol}^{-1}$. The heats of formation of $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -394.12 and $-286.31 \mathrm{kJmol}^{-1}$ respectively.

## - Watch Video Solution

71. When 14.9 g of solid KCl is dissolved in large excess of water, the amount of heat liberated is 3.72 kJ . Calculate the heat of solution of KCl .

## - Watch Video Solution

72. what is entropy change for reaction $2 \mathrm{H} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g})---\mathrm{e} 2 \mathrm{H} 2 \mathrm{O}(\mathrm{I})$. Standard entropies of $\mathrm{H} 2(\mathrm{~g}), \mathrm{O} 2(\mathrm{~g})$ and $\mathrm{H} 2 \mathrm{O}(\mathrm{I})$ are $126.6,201.20,68.0 \mathrm{~J} / \mathrm{k}$ mol respectively

## - Watch Video Solution

73. Calculate the amount of heat liberated when $500 \mathrm{~cm}^{3}$ of $\frac{N}{10} \mathrm{H}_{2} \mathrm{SO}_{4}$ react with $400 \mathrm{~cm}^{3}$ of $\frac{N}{15} \mathrm{NaOH}$.

## - Watch Video Solution

74. The standard molar heat of formation of ethane, carbon dioxide and water (liquid) are -21.1, -94.1 and -68.3 kcal respectively. Calculate the standard heat of the following reaction :
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

## - Watch Video Solution

75. The $\Delta H^{\circ}$ for the reaction

$$
H_{2}(g)+I_{2}(g) \rightarrow 2 H I(g)
$$

is +53.6 kJ . Mention whether the reaction is exothermic or endothermic and calculate the standard heat of formation of HI .

## - Watch Video Solution

76. The heat of combustion of butane is 2658 kl . A cylinder of LPG gas (containing only butane) is assumed to contain 14.2 kg of butane. If a
normal family needs 18000 kJ of energy per day for cooking, how long the cylinder will last?

## - Watch Video Solution

77. The calorific value of milk is $3.2 \mathrm{kJg}^{-1}$. A child needs about 4000 kJ per day. If the child survives on milk only, how much milk (in mass) should be given to him every day?

## - Watch Video Solution

78. Sucrose undergoes combustion as
$C_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2}(g) \rightarrow 12 \mathrm{CO}_{2}(g)+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-5643 k J$ How much energy will be liberated when 3.42 g of sucrose are burnt ?

## - Watch Video Solution

79. Calculate the heat of formation of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ from thhe following data:
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta=-726 \mathrm{~kJ}$

$$
C(s)+O_{2}(g) \rightarrow C O_{2}(g)
$$

$\Delta H=-394 k J$
$\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l), \Delta H=-286 k J$

## - Watch Video Solution

80. Calculate the heat of formation of $\mathrm{MgCO}_{2}$ (s) from the following data
$C$ (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-393.5 \mathrm{~kJ}$
$2 M g(s)+O_{2}(g) \rightarrow 2 M g O(s), \Delta H=-1203.6 k J$
$\mathrm{MgO}(s)+\mathrm{CO}_{2}(g) \rightarrow \mathrm{MgCO}_{3}(s), \Delta H=-117.7 \mathrm{~kJ}$

## - Watch Video Solution

81. Calculate the bond energy of $\mathrm{H}-\mathrm{Cl}$ bond, given that the bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ bonds are $433 \mathrm{kJmol}^{-1}$ and $242 \mathrm{kJmol}^{-1}$ respectivly. The $\Delta H_{f}$ for HCl is $-91 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

## - Watch Video Solution

82. Calculate the heat of combustion of ethyl alcohol from the following data :
(i) Heat of formation of ethyl alcohol $=-64.1 \mathrm{kcal}$
(ii) Heat of formation of water $=-68.5 \mathrm{kcal}$
(iii) Heat of formation of $\mathrm{CO} 2=-94.3 \mathrm{kcal}$.

## - Watch Video Solution

83. What would be the complications if Hess's law were not true?
84. What is bond enthalpy and how is it calculated?

## - Watch Video Solution

## Review Exercises Fill In The Blanks

1. $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+185 \mathrm{~kJ}$

This reaction is Thermic and $\Delta H=\ldots k J$.

## - Watch Video Solution

2. $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-286 \mathrm{~kJ}$
$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l), \Delta H=\ldots k J$

## - Watch Video Solution

3. $H_{2}(g)+I_{2}(g) \rightarrow 2 H I(g), \Delta H=52.2 k J$
$2 \mathrm{HI}(g) \rightarrow \mathrm{H}_{2}(g)+I_{2}(g), \Delta H=k J$

## - Watch Video Solution

4. $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g), \Delta H=-809 k J$

The calorific value of 1 kg of $\mathrm{CH}_{4}(\mathrm{~g})$ is $\qquad$ kJ/kg.

## - Watch Video Solution

5. $C(s) \rightarrow C(g), \Delta H=716.7 \mathrm{~kJ}$
$\Delta H$ is the heat of .............. of graphite.

## - Watch Video Solution

6. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta H=-92.3 \mathrm{~kJ}$
$2 \mathrm{NH}_{3}(g) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g), \Delta H=\ldots \ldots . . k J$

## Very Short Answer Type Questions

1. Define thermodynamics.

## - Watch Video Solution

2. What type of systes are the following system?

Hot tea placed in a thermos flask.

## - Watch Video Solution

3. Sort out the intensive and extensive properties among the following: Temperature, mass, specific heat, density, enthalpy, entropy, concentration, free energy.
4. Which of the following are not state functions ?

Temperature, entropy, heat, work, enthalpy, internal energy.

## - Watch Video Solution

5. Distinguish between isobaric and isochoric process.

## - Watch Video Solution

6. What is the sign convention for heat ?

## - Watch Video Solution

7. A system transfers 20 kJ of heat to the surroundings. Write the value of $q$ for both the system and surroundings.
8. What is the sign convention for work?

## - Watch Video Solution

9. A gas expands by a volume $\Delta V$ against a constant pressure P . What is the work done by the system?

## - Watch Video Solution

10. Assertion : There is no change in internal energ in a cyclic process.

Reason : Internal energy is a state function.

## - Watch Video Solution

11. Write the mathematical statement of first law of thermodynamics.
12. What happens to the internal energy of a system if work is done on the system.

## - Watch Video Solution

13. What happens to the internal energy of a system if work is done by the system?

## - Watch Video Solution

14. For the reaction, ${ }^{\mathrm{N}} \mathrm{N}_{-} 2(\mathrm{~g})+3 \mathrm{H}_{-} 2(\mathrm{~g})$ to $2 \mathrm{NH}_{-} 3(\mathrm{~g})$, predict whether the work is done by the system or on the system.

## - Watch Video Solution

15. Define internal energy of a system.
16. What is the value of $\Delta E$ when the work done by the system is equal to the heat absorbed by the system?

## - Watch Video Solution

17. Define internal energy and enthalpy of a system.

## - Watch Video Solution

18. Derive the following equation :
$\Delta H=\Delta U+(\Delta n) R T$

- Watch Video Solution

19. What is the value for $\Delta H$ for the given process,
$\mathrm{NaOH}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) ?$

## - Watch Video Solution

20. What do you understand by a spontaneous process ? Give two examples

## - Watch Video Solution

21. Which of the following processes are spontaneous and which are non-spontaneous ?
(i) Flow of air from high pressure to low pressure.
(ii) Formation of ice in a refrigerator.
(iii) Spreading of a drop of ink in water kept in a beaker.
(iv) Reverse osmosis.
(v) Burning of coal in air.
(vi) Dissolution of Cu in $\mathrm{ZnSO}_{4}$ solution.

## - Watch Video Solution

22. In which direction does a spontaneous process proceed ?

## - Watch Video Solution

23. Dissolution of ammonium chloride in water is an endothermic reaction, yet it is a spontaneous process. This is due to the fact that

## - Watch Video Solution

24. Explain the term 'entropy'.
25. If a system absorbs $q$ amount of heat at temperature $T$, what would be the change in the entropy of the system?

## - Watch Video Solution

26. Define the term absolute entropy.

## - Watch Video Solution

27. Is the entropy of the universe constant ?

## - Watch Video Solution

28. Amongst a gaseous substance and a liquid substance, which is expected to possess higher entropy and why?

## - Watch Video Solution

29. For a process to be spontaneous:

## - Watch Video Solution

30. Which of the following are expected not to have zero entropy even at absolute zero ?
$\mathrm{NaCl}, \mathrm{NO}, \mathrm{CO}_{2}, \mathrm{CO}$

## - Watch Video Solution

31. What is the sign of $\Delta S$ for a spontaneous reaction ?

## - Watch Video Solution

32. How does the entropy change occur in the process of melting of a solid?
33. Write the expression which gives the entropy of vapourisation of a liquid.

## - Watch Video Solution

34. State and explain the second law of thermodynamics.

## - Watch Video Solution

35. Gibbs Free Energy

## - Watch Video Solution

36. What is the enthalpy of formation of the most stable form of an element in its standard state ?
37. What does the term $T \Delta S_{\text {total }}$ total represent ?

## - Watch Video Solution

38. What is the free energy criterion for a process to occur spontaneously?

## - Watch Video Solution

39. The free energy change $\Delta G=0$, when

## - Watch Video Solution

40. An endothermic process involves an increase in the entropy of the system. Predict the condition under which the process would be feasible.
41. An exothermic reaction involves a decrease in the entropy of the system. Will the process be spontaneous ?

## - Watch Video Solution

42. How is standard free energy change related to equilibrium constant ?

## - Watch Video Solution

43. State the third law of thermodynamics.

## - Watch Video Solution

44. What do you understand by the term thermochemistry ?
45. Can chemical energy be transferred into electrical energy? If yes, give an example.

## - Watch Video Solution

46. Assertion : $\Delta H$ for an exothermic reaction is negative nad for an endothermic reaction is positive.

Reason : Enthalpy is an extensive property.

## - Watch Video Solution

47. Why is it necessary to mention the physical state of substances in a thermochemical equation ?

## - Watch Video Solution

48. Define heat of reaction.
49. Is calorific value of a food or a fuel is equal to its heat of combustion

## - Watch Video Solution

50. State whether each of the following processes is exothermic or endothermic : $K C l(s)+a q \rightarrow K C l(a q), \Delta H=+18.6 k J$

## - Watch Video Solution

51. State whether each of the following processes is exothermic or endothermic
$\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-57.1 \mathrm{~kJ}$
52. State whether the following processes is exothermic or endothermic
$: \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(s), \Delta H=-6.01 \mathrm{~kJ}$

## - Watch Video Solution

53. State whether each of the following processes is exothermic or endothermic: $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta H=+40.7 \mathrm{~kJ}$.

## - Watch Video Solution

54. Name the heat that is involved in the conversion of one allotropic form into the other.

## - Watch Video Solution

55. What would be the complications if Hess's law were not true?
56. What would be the bond formation energy of C-H bond if its bond energy is $+416.18 \mathrm{kJmol}^{-1}$ ?

## - Watch Video Solution

## Short Answer Type Questions

1. Define thermodynamics. Describe the significance and limitations of thermodynamics.

## - Watch Video Solution

2. Define the System.

## - Watch Video Solution

3. Define State of a system.

## - Watch Video Solution

4. Define State variables.

## - Watch Video Solution

5. Explain with examples the various types of systems.

## - Watch Video Solution

6. What do you understand by intensive and extensive properties of a system ? Explain with examples.

## - Watch Video Solution

7. In an adiabatic process

## - Watch Video Solution

8. Define the Cyclic process.

## - Watch Video Solution

9. Define the Reversible process.

## - Watch Video Solution

10. Define heat and work and mention their sign conventions.
11. State and explain the first law of thermodynamics. Derive its mathematical form.

## - Watch Video Solution

12. Give the limitations of the first law of thermodynamics.

## - Watch Video Solution

13. Define internal energy of a system.

## - Watch Video Solution

14. Using the first law of thermodynamics, Show that $\Delta U=q_{v}$.

## - Watch Video Solution

15. Define enthalpy and enthalpy change. Show that $\Delta H=q_{p}$.

## - Watch Video Solution

16. Define enthalpy. Show that the change in enthalpy at constant pressure for a reaction involving gases is given by the expression, $\Delta H=\Delta U+\Delta n_{g} . R T$.

## - Watch Video Solution

17. Establish a relationship between $\Delta H$ and $\Delta U$. Under what conditions is $\Delta H=\Delta U$ ?

## - Watch Video Solution

| 18. $\quad$ Predict whether | the |
| :--- | :---: | ---: | :--- |
| $\mathrm{H}-\mathrm{H}(g)+\mathrm{Cl}-\mathrm{Cl}(g) \rightarrow 2 \mathrm{H}-\mathrm{Cl}(g)$, | will be exothermic or |

endothermic. Give reason for your answer.

## - Watch Video Solution

19. State and explain the second law of thermodynamics.

## - Watch Video Solution

20. State a chemical reaction in which $\Delta H$ and $\Delta U$ are equal.

## - Watch Video Solution

21. What is meant by the term 'free energy'? What was the necessity of introducing such a function ?
22. Define enthalpy and enthalpy change. Show that $\Delta H=q_{p}$.

## - Watch Video Solution

23. What is the free energy criterion for a process to occur spontaneously?

## - Watch Video Solution

24. Explain the term 'entropy'.

## - Watch Video Solution

25. State giving reason whether the following reaction would involve an increase, a decrease or no change in entropy.

$$
4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)
$$

26. What do you understand by a spontaneous process ? Give two examples

## - Watch Video Solution

27. What do you understand by the spontaneity of a process ? Discuss the spontaneity of a process in terms of entropy and free energy.

## - Watch Video Solution

28. Can $\Delta H$ be regarded as the sole criterion to explain the spontaneity of a process? If no, explain why?
29. With the help of at least two examples show that randomness increases in a spontaneous process.

## - Watch Video Solution

30. What is entropy and in what units is it expressed ? Discuss the physical significance of entropy.

## - Watch Video Solution

31. For the reaction $2 H(g) \rightarrow H_{2}(g)$, the sign of $\Delta H$ and $\Delta S$ respectively are :

## - Watch Video Solution

32. What happens to the entropy when a gas undergoes expansion ? Explain.
33. Is the entropy of the universe constant ?

## - Watch Video Solution

34. State and explain the second law of thermodynamics. Mention the essential conditions for the spontaneity of a chemical reaction.

## - Watch Video Solution

35. Show that the entropy changes in a reversible isothermal process is zero.
36. Show that the entropy change in an irreversible process is always positive.

## - Watch Video Solution

37. Define 'entropy of fusion' and 'entropy of vapourisation and write expressions to represent them.

## - Watch Video Solution

38. State and explain the second law of thermodynamics.

## - Watch Video Solution

39. Gibbs Free Energy
40. Derive the equation, $\Delta G=\Delta H-T \Delta S$.

## - Watch Video Solution

41. Give 2 points of difference between molarity and molality.

## - Watch Video Solution

42. What is the free energy criterion for a process to occur spontaneously?

## - Watch Video Solution

43. For the process $A+B \rightarrow C+D, \Delta G$ is positive. Comment on the spontaneity of the process.
44. What are spontaneous processes ? Mention the conditions for a reaction to be spontaneous at constant temperature and pressure.

## - Watch Video Solution

45. What is entropy ? State the effect of increased temperature on the entropy of a substance.

## - Watch Video Solution

46. State the thermodynamic conditions for spontaneous occurrence of a process.

## - Watch Video Solution

47. $\Delta H$ and $\Delta S$ are positive for a chemical reaction. Under what conditions is the reaction expected to occur spontaneously?
48. What is meant by free energy of a substance ? How is it related to its enthalpy and entropy?

## - Watch Video Solution

49. Define and explain the term entropy of a system. Illustrate it using a spontaneous irreversible change.

## - Watch Video Solution

50. Comment on the spontaneity of a process when
$\Delta H>0, T \Delta S>0$ and $T \Delta S<\Delta H$

## - Watch Video Solution

51. Comment on the spontaneity of a process when
$\Delta H>0, T \Delta S<0$

## - Watch Video Solution

52. Comment on the spontaneity of a process when
$\Delta H>0, T \Delta S>0$ and $T \Delta S<\Delta H$

## - Watch Video Solution

53. Comment on the spontaneity of a process when
$\Delta H>0, T \Delta S>0$ and $T \Delta S<\Delta H$

## - Watch Video Solution

54. Discuss the effect of temperature on the spontaneity of a process.
55. How is standard free energy change related to equilibrium constant

## - Watch Video Solution

56. Discuss the relation between free energy and EMF.

## - Watch Video Solution

57. State the third law of thermodynamics.

## - Watch Video Solution

58. Why is heat evolved or absorbed in a chemical reaction ?
59. What do you understand by exothermic and endothermic reactions? How are they related to the change in enthalpy?

## - Watch Video Solution

60. What do you understand by standard enthalpy of a reaction and how is it represented?

## - Watch Video Solution

61. Define heat of formation.How is it useful in the calculation of the heat of a reaction ?

## - Watch Video Solution

62. Calculate the calorific value of sugar if its heat of combustion is $5645 \mathrm{kJmol}^{-1}$.
63. Why is heat of neutralisation for a strong acid and strong base constant?

## - Watch Video Solution

## Essay Long Answer Type Questions

1. What do you understand by the terms system and surroundings? Discuss with examples the various types of systems.

## - Watch Video Solution

2. What do you understand by pressure-volume work? Derive an expression for it.
3. Derive an expression for the work done during an isothermal process.

## - Watch Video Solution

4. State and explain the first law of thermodynamics. Derive its mathematical form.

## - Watch Video Solution

5. What is internal energy and internal energy change? What is its significance?

## - Watch Video Solution

6. Establish a relationship between $\Delta H$ and $\Delta U$. Under what conditions is $\Delta H=\Delta U$ ?
7. Define enthalpy of reaction.

## - Watch Video Solution

8. Discuss the relationship between $\Delta U, \Delta H, q_{p}$ and w for the dissociation of ammonia carried out under constant pressure.
$2 \mathrm{NH}_{3}(\mathrm{~g}) \xrightarrow{\text { heat }} \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

## - Watch Video Solution

9. Show that the heat absorbed at constant volume is equal to the increase in the internal energy of the system, whereas that at constant pressure is equal to the increase in the enthalpy of the system.

## Watch Video Solution

10. State and explain the second law of thermodynamics.

## - Watch Video Solution

11. What do you understand by spontaneous and non spontaneous processes ? What are the important features of a spontaneous process ?

## - Watch Video Solution

12. What do you understand by the spontaneity of a process ? Discuss the spontaneity of a process in terms of entropy and free energy.

## - Watch Video Solution

13. What is entropy and how is it related to the spontaneity of a process?
14. Show that the entropy changes in a reversible isothermal process is zero.

## - Watch Video Solution

15. Define the following and write expressions for calculating each of them. Entropy of fusion

## - Watch Video Solution

16. Define the following and write expressions for calculating each of them. Entropy of vapourisation.

## - Watch Video Solution

17. Define the following and write expressions for calculating each of them. Entropy of sublimation.

## - Watch Video Solution

18. How would you calculate the entropy change in a chemical reaction?

How is it helpful in discussing the spontaneity of the reaction?

## - Watch Video Solution

19. What is Gibbs free energy ? Derive the relation, $\Delta_{G}=\Delta H-T \Delta S$.

Discuss the free energy criterion for the spontaneity of a process.

## - Watch Video Solution

20. What is the status of a process when (i) $\Delta G<0$ (ii) $\Delta G=0$ (iii)
$\Delta G>0 ?$

In which of the above cases, the process can be used for obtaining useful work?

## - Watch Video Solution

21. Discuss the effect of temperature on the spontaneity of a process when for the process both $\Delta H$ and $\Delta S$ are negative.

## - Watch Video Solution

22. Discuss the effect of temperature on the spontaneity of a process when for the process both $\Delta H$ and $\Delta S$ are positive.

## - Watch Video Solution

23. State the third law of thermodynamics.
24. What do you understand by enthalpy and change in enthalpy? Why does a chemical reaction involve a change in enthalpy?

## - Watch Video Solution

25. What are thermochemical equations and what is their significance in the study of chemical energetics ? State and explain the conventions used for writing a thermochemical equation.

## - Watch Video Solution

26. What is heat of reaction and on what factors does it depend?

## - Watch Video Solution

27. Write shot notes on the Heat of formation.
28. Write shot notes on the Heat of combustion.

## - Watch Video Solution

29. Write shot notes on the Heat of solution.

## - Watch Video Solution

30. Write shot notes on the Heat of transition.

## - Watch Video Solution

31. Why is heat of neutralisation for a strong acid and strong base constant?
32. State and explain Hess's law of constant heat summation. Illustrate it with examples. Discuss its important applications.

## - Watch Video Solution

## Objective Multiple Choce Type Questions

1. Thermodynamics is concerned with
A. total energy of the system
B. energy changes in a system
C. rate of a chemical change
D. mass changes in nuclear reactions.

Answer: B
2. Thermodynamic equilibrium involves
A. chemical equilibrium
B. thermal equilibrium
C. mechanical equilibrium
D. all the three.

## Answer: D

## - Watch Video Solution

3. During the isothermal expansion of an ideal gas, its internal energy increases
enthalpy decreases
enthalpy remains unaffected
enthalpy reduces to zero.
A. internal energy increases
B. enthalpy decreases
C. enthalpy remains unaffected
D. enthalpy reduces to zero.

## Answer: C

## (D) Watch Video Solution

4. Evaporation of water is:
a process in which heat is neither evolved nor absorbed
a process accompanied by chemical reaction an exothermic change an endothermic change.
A. a process in which heat is neither evolved nor absorbed
B. a process accompanied by chemical reaction
C. an exothermic change
D. an endothermic change.

## D Watch Video Solution

5. Which of the following reactions is endothermic ?
$\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(s)$
$F e(s)+S(s) \rightarrow F e S(s)$
$\mathrm{NaOH}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
$\left.\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{29} g\right)+2 \mathrm{H}_{2} \mathrm{O}(l)$.
A. $\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(s)$
B. $F e(s)+S(s) \rightarrow F e S(s)$
C. $\mathrm{NaOH}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
D. $\left.\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{29} g\right)+2 \mathrm{H}_{2} \mathrm{O}(l)$.

## Answer: A

6. For the reaction, $N_{2}[g]+3 H_{2}[g] \Leftrightarrow 2 N H_{3}[g], \Delta H=\ldots$
A. $\Delta U-2 R T$
B. $\Delta U+2 R T$
C. $\Delta U+R T$
D. $\Delta U-R T$.

## Answer: A

## - Watch Video Solution

7. The difference between heats of reaction at constant pressure and constant volume for the reaction,

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(g) \rightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

at $25^{\circ} \mathrm{C}$ in kJ is
A. +7.43
B. +3.72
C. -7.43
D. -3.72

## Answer: C

## - Watch Video Solution

8. A spontaneous change is one in which the system suffers:
an increase in internal energy
lowering in entropy
lowering in free energy
no energy change
A. an increase in internal energy
B. lowering in entropy
C. lowering in free energy
D. no energy change

## - Watch Video Solution

9. In which of the following changes does entropy decrease ?
A. Crystallisation of sucrose from solution
B. Dissolving sucrose in water
C. Melting of ice
D. Vapourisation of camphor.

## Answer: A

## - Watch Video Solution

10. For which reaction among the following, is $\Delta S$ maximum ?
A. $\mathrm{Ca}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaO}(s)$
B. $\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
C. $\left.\mathrm{C}(\mathrm{s})+\mathrm{O}_{29} g\right) \rightarrow \mathrm{CO}_{2}(g)$
D. $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)$

## Answer: B

## - Watch Video Solution

11. The free energy change for a reversible reaction at equilibrium is:
zero
small positive
small negative
large positive.
A. zero
B. small positive
C. small negative
D. large positive.

## - Watch Video Solution

12. The spontaneous nature of a reaction is impossible if
A. $\Delta H$ is $+v e, \Delta S$ is also +ve
B. $\Delta H$ is $-v e, \Delta S$ is also - ve
C. $\Delta H$ is $-v e, \Delta S$ is + ve
D. $\Delta H$ is $\quad+v e, \Delta S$ is -ve

## Answer: D

## - Watch Video Solution

13. Which is an extensive property of the system?

Temperature
Volume

## Refractive index

Viscosity.
A. Temperature
B. Volume
C. Refractive index
D. Viscosity.

## Answer: B

## - Watch Video Solution

14. Which is not a state function of a thermodynamic system?

Internal energy (U)

Free energy (G)
Enthalpy (H)

Work (W).
A. Internal energy (U)
B. Free energy (G)
C. Enthalpy (H)
D. Work (W).

## Answer: D

## - Watch Video Solution

15. Is the entropy of the universe constant?
A. is increasing and tending towards a maximum value
B. is decreasing and tending towards zero
C. remains constant
D. decreasing and increasing with a periodic rate.

## Answer: A

16. Decrease in free energy of a reacting system indicates: an exothermic reaction an endothermic reaction a spontaneous reaction a slow reaction.
A. an exothermic reaction
B. an endothermic reaction
C. a spontaneous reaction
D. a slow reaction.

## Answer: C

## - Watch Video Solution

17. Gibbs free energy G, enthalpy $H$ and entropy $S$ are related as
A. $\mathrm{G}=\mathrm{H}+\mathrm{TS}$
B. $\mathrm{G}=\mathrm{H}-\mathrm{TS}$
C. G-TS = H
D. $\mathrm{S}=\mathrm{H}-\mathrm{G}$.

## Answer: B

## - Watch Video Solution

18. A system is provided 50 J of heat and work done on the system is 10 J . The change in internal energy during the process is
A. 40 J
B. 60 J
C. 80 J
D. 50 J .

## Answer: B

19. The entropy change for vapourisation of liquid water to steam $100^{\circ} \mathrm{C}$ is .... $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Given that heat of vapourisation is $40.8 \mathrm{kJmol}^{-1}$.
A. 109.38
B. 100.38
C. 110.38
D. 120.38

## Answer: A

## - Watch Video Solution

20. The entropy change at a given temperature is expressed as:
$q=T \Delta S$
$\Delta S=q / \Delta T$
$\Delta S=q-T$
$S=q / T$
A. $q=T \Delta S$
B. $\Delta S=q / \Delta T$
C. $\Delta S=q-T$
D. $S=q / T$

## Answer: A

## - Watch Video Solution

21. For an adiabatic process, which of the following is correct ?
$P \Delta V=0$
$q=+w$
$\Delta E=q$
$q=0$
A. $P \Delta V=0$
B. $q=+w$
C. $\Delta E=q$
D. $q=0$

## Answer: D

## - Watch Video Solution

22. The amount of heat measured for a reaction in a bomb calorimeter corresponds to
A. $\Delta G$
B. $\Delta H$
C. $\Delta U$
D. $P \Delta V$.

## Answer: C

23. The work done in ergs for the reversible expansion of one mole of an ideal gas from a volume of 10 litres to a volume of 20 litres at $25^{\circ} C$ is
A. $2.303 \times 298 \times 0.082 \log _{10} 2$
B. $298 \times 10^{7} \times 8.31 \times 2.303 \log _{10} 2$
C. $2.303 \times 289 \times 0.082 \log _{10} 0.5$
D. $2.303 \times 298 \times 2 \log _{10} 2$.

## Answer: B

## - Watch Video Solution

24. Which of the following values of heat of formation does indicate that the product is least stable?

- 94 kcal
- 231.5 kcal
+64.8 kcal .
+21.4 kcal
A. -94 kcal
B. -231.5 kcal
C. +21.4 kcal
D. +64.8 kcal .


## Answer: D

## - Watch Video Solution

25. The heat of neutralisation is highest in
A. $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{HCl}+\mathrm{NaOH}$
C. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}$
D. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}$.

## - Watch Video Solution

26. The heat of neutralisation of NaOH and HCl is $57.3 \mathrm{kJmol}^{-1}$ then the amount of heat liberated if 2 moles each of NaOH and HCl are reacted is
A. 57.3 kJ mol
B. 114.6 kJ mol
C. 28.65 kJ mol
D. 215.2 kJ mol

## Answer: B

## - Watch Video Solution

27. In a flask colourless $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium with brown coloured $\mathrm{NO}_{2}$
. At equilibrium, when the flask is heated at $100^{\circ} \mathrm{C}$ the brown colour
deepens and on cooling it becomes less coloured. The change in enthalpy, $\Delta H$ for this system is
A. negative
B. positive
C. zero
D. undefined

## Answer: B

## - Watch Video Solution

28. The process of evaporation of a liquid is accompanied by:
increase in enthalpy
decrease in entropy
no change in free energy
increase in entropy.
A. increase in enthalpy
B. decrease in entropy
C. no change in free energy
D. increase in entropy.

## Answer: D

## (D) Watch Video Solution

29. The heats of combustion of carbon and carbon monoxide are -393.5
and $-283.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The heat of formation (in kJ ) of carbon monoxide per mole is :
A. 668 kJ
B. -668 kJ
C. 112 kJ
D. - 112 kJ .
30. The standard enthalpy of formation of NH3 is $-46.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If the enthalpy of formation of $H_{2}$ from its atoms is -436 kJ mol and that of $N_{2}$ is -712 kJ mol , the average bond enthalpy of $\mathrm{N}-\mathrm{H}$ bond in $\mathrm{NH}_{3}$ is
A. $-964 \mathrm{kJmol}^{-1}$
B. $+352 \mathrm{kJmol}^{-1}$
C. $+1056 \mathrm{kJmol}^{-1}$
D. $-1102 \mathrm{kJmol}^{-1}$

## Answer: B

## - Watch Video Solution

31. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of 10 dm 3 a volume of 100 dm 3 at $27^{\circ} \mathrm{C}$ is
A. $38.3 \mathrm{Jmol}^{-1} k^{-1}$
B. $35.8 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $32.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. $42.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Answer: A

## - Watch Video Solution

32. In view of the signs of $\Delta_{r} G^{\circ}$ for the following reactions
$\mathrm{PbO}_{2}+\mathrm{Pb} \rightarrow 2 \mathrm{PbO}, \Delta_{r} G^{\circ}<0$
$\mathrm{SnO}_{2}+\mathrm{Sn} \rightarrow 2 \mathrm{SnO}, \Delta_{r} G^{\circ}>0$
Which oxidation states are more characteristic for lead and tin?
A. For lead +4 , for tin +2
B. For lead +2 , for tin +2
C. For lead +4 , for tin +4
D. For lead +2 , for tin +4 .

## Answer: D

## - Watch Video Solution

33. The value of enthalpy change $(\Delta H)$ for the reaction
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
at $27^{\circ} \mathrm{C}$ is $-1366.5 \mathrm{kJmol}^{-1}$. The value of internal energy change for the above reaction at this temperature will be
A. -1371.5 kJ
B. -1369.0 kJ
C. -1364.0 kJ
D. -1361.5 kJ

## Answer: C

34. If the enthalpy change for the transition of liquid water to steam is $30 \mathrm{kJol}^{-1}$ at $27^{\circ} \mathrm{C}$ the entropy change for the process would be
A. $1.0 \mathrm{Jmol}^{-1} K^{-1}$
B. $0.1 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $100 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. $10 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$.

## Answer: C

## - Watch Video Solution

35. Which of the following is correct option for free expansion of an ideal gas under adiabatic condition?
A. $q \neq 0, \Delta T=0, W=0$
B. $q=0, \Delta T=0, W=0$
C. $q=0, \Delta T<0, W \neq 0$
D. $q=0, \Delta T \neq 0, W=0$

## Answer: B

## - Watch Video Solution

36. Enthalpy change for the reaction,
$4 \mathrm{H}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})$ is -869.6 kJ
The dissociation energy of $\mathrm{H}-\mathrm{H}$ bond is
A. $-869.6 k J$
B. $+434.8 k J$
C. $+217.4 k J$
D. $-434.8 k J$

## Answer: B

37. The enthalpy of fusion of water is $1.435 \mathrm{kcal} / \mathrm{mol}$. The molar entropy change for the melting of ice at $0^{\circ} \mathrm{C}$ is ?
A. $10.52 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
B. $21.04 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
C. $5.260 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
D. $0.526 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$.

## Answer: C

## - Watch Video Solution

38. Standard enthalpy of vapourisation $\Delta_{\text {vap }} H^{-}$for water at $100^{\circ} \mathrm{C}$ is $40.66 \mathrm{kJmol}^{-1}$. The internal energy of vapourisation of water at $100^{\circ} \mathrm{C}$ (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) is (Assume water vapour to behave like an ideal gas).
B. -43.76
C. 43.76
D. +40.66 .

## Answer: A

## - Watch Video Solution

39. In which of the following reactions, standard reaction entropy changes $(\Delta S)$ is positive and standard Gibbs energy change ('DeltaG') decreases sharply with increasing temperature?
A. $C$ (graphite) $+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g)$
B. $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
C. $M g(s)+\frac{1}{2} O_{2}(g) \rightarrow M g O(g)$
D. $\frac{1}{2} \mathrm{C}$ (graphite) $+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \frac{1}{2} \mathrm{CO}_{2}(g)$

## Watch Video Solution

40. A piston filled with 0.04 mole of an ideal gas expands reversibly from 50.0 mL at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs $208 J$ of heat. The value of $q$ and $W$ for the process will be $(R=8.314 J /$ molK, $1 n 7.5=2.01)$
A. $q=+208 J, W=-208 J$
B. $q=-208 J, W=-208 J$
C. $q=-208 J, W=+208 J$
D. $q=+208 J, W=+208 \mathrm{~J}$

## Answer: A

## - Watch Video Solution

41. For complete combustion of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, the amount of heat
produced as measured in bomb calorimeter, is $1364.47 \mathrm{kJmol}^{-1}$ at $25^{0} C$. Assuming ideality the Enthalpy of combustion, $\Delta_{C} H$, for the reaction will be: $\left(R=8.314 \mathrm{kJmol}^{-}\right)$.
A. $-1366.95 \mathrm{kJmol}^{-1}$
B. $-1361.95 \mathrm{kJmol}^{-1}$
C. $-1460.50 \mathrm{kJmol}^{-1}$
D. $-1350.50 \mathrm{kJmol}^{-1}$

## Answer: A

## - Watch Video Solution

42. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L . The change in internal energy $\Delta U$ of the gas in joules will be
A. 1136.25 J
B. -500 J
C. -505 J
D. +505 J

## Answer: C

## - Watch Video Solution

43. For a given reaction, $\Delta H=35.5 \mathrm{kJmol}^{-1}$ and
$\Delta S=83.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The reaction is spontaneous at (Assume that
$\Delta H$ and $\Delta S$ do not vary with temperature)
A. TIt 425 K
B. Tgt 425 K
C. All temperatures
D. Tgt 298 K

## Answer: B

## Watch Video Solution

44. Given $C_{(\text {graphite })}+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$,
$\Delta_{r} H^{0}=-393.5 k J \quad \mathrm{~mol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g})=+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(1)$,
$\Delta_{r} H^{0}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(1) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$,
$\Delta_{r} H^{0}=+890.3 k J \quad \mathrm{~mol}^{-1}$
Based on the above thermochemical equations, the value of $\Delta_{r} H^{0}$ at at 298 K for the reaction
$C_{(\text {graphite })}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$ will be:
A. $-74.8 \mathrm{kJmol}^{-1}$
B. $-144.0 \mathrm{kJmol}^{-1}$
C. $+74.8 \mathrm{kJmol}^{-1}$
D. $+144.0 \mathrm{kJmol}^{-1}$
45. $\Delta U$ is equal to
A. adiabatic work
B. isothermal work
C. isochoric work
D. isobaric work

## Answer: A

## - Watch Video Solution

46. The bond dissociation energies of $X_{2}, Y_{2}$ and $X Y$ are in the ratio of $1: 0.5: 1 . \Delta H$ for the formation of XY is $-200 \mathrm{~kJ} \mathrm{~mol}^{\wedge}(-1)$ . Thebonddissociatione $\neq$ rgyof $X_{-} 2^{`}$ will be
A. $200 \mathrm{kJmol}^{-1}$
B. $100 \mathrm{kJmol}^{-1}$
C. $800 \mathrm{kJmol}^{-1}$
D. $400 \mathrm{kJmol}^{-1}$

## Answer: C

## - Watch Video Solution

47. The combustion of benzene(/) gives $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ Given that heat of combustion of benzene at constant volume is $-3263.9 \mathrm{kJmol}^{-1}$ at $25^{\circ} \mathrm{C}$, heat of combustion (in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ ) of benzene at constant pressure will be

$$
\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
$$

A. 4152.6
B. -452.46
C. 3260
D. -3267.6

## - Watch Video Solution

48. For the cell reaction
$2 \mathrm{Fe}^{3+}(a q)+2 l^{-1}(a q) \rightarrow 2 \mathrm{Fe}^{2+}(a q)+I_{2}(a q)$
$E_{\text {cell }}^{\Theta}=0.24 \mathrm{~V}$ at 298 K . The standard Gibbs energy $\left(\Delta_{r} G^{\Theta}\right)$ of the cell reaction is
[Given that Faraday constnat $F=96500 \mathrm{Cmol}^{-1}$ ]
A. $46.32 \mathrm{kJmol}^{-1}$
B. $23.16 \mathrm{kJmol}^{-1}$
C. $-46.32 \mathrm{kJmol}^{-1}$
D. $-23.16 \mathrm{kJol}^{-1}$

## Answer: C

49. Under isothermal condition, a gas at 300 K expands from 0.1 L to 0.25

L against a constant external pressure of 2 bar. The work done by the gas is (Given that 1 L bar $=100 \mathrm{~J}$ )
A. 25 J
B. 30 J
C. -30 J
D. 5 kJ .

## Answer: C

## - Watch Video Solution

50. In which case change in entropy is negative?
A. Sublimation of solid to gas
B. $2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
C. Evaporation of water
D. Expansion of a gas at constant temperature.

## Answer: B

## - Watch Video Solution

51. For a cell involving one electron $E_{\text {cell }}^{0}=0.59 \mathrm{~V}$ and 298 K , the equilibrium constant for the cell reaction is:
[Given that $\frac{2.303 R T}{F}=0.059 \mathrm{~V}$ at $T=298 \mathrm{~K}$ ]
A. $1.0 \times 10^{5}$
B. $1.0 \times 10^{10}$
C. $1.0 \times 10^{30}$
D. $1.0 \times 10^{2}$

Answer: B
52. The INCORRECT match in the following is
A. $\Delta G^{\circ}=0, K=1$
B. $\Delta G^{\circ}<0, K<1$
C. $\Delta G^{\circ}>0, K<1$
D. $\Delta G^{\circ}<0, K>1$

## Answer: B

## - Watch Video Solution

53. During compression of a spring the work done is 10 kJ and 2 kJ escaped to the surroundings as heat. The change in internal energy $\Delta U$ (in kj ) is
A. 12
B. -8
C. 8
D. -12

## Answer: C

## - Watch Video Solution

54. Consider the given plot of enthalpy of the following reaction between A and B. $A+B \rightarrow C+D$. Identify the incorrect statement.

A. C is the thermodynamically stable product.
$B$. Formation of $A$ and $B$ from $C$ has highest enthalpy of activation.
C. Activation enthalpy to form $C$ is 5 kJ mor less than that to form D .
D. D is kinetically stable product.

## Answer: C

## (D) Watch Video Solution

55. The standard Gibbs energy for the given cell reaction in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ at 298 K is
$Z n(s)+C u^{2+}(a q) \rightarrow Z n^{2+}(a q)+C u(s), E^{\circ}=2 V$ at $298 K$ (Faraday's constant, $F=96000 \mathrm{Cmol}^{-1}$ )
A. -192
B. 192
C. -384
D. 384

## Answer: C

56. Among the following, the set of parameters that represents path functions is
(A) $q+w(B) q(C) w(D) H-T S$
A. (A), (B) and (C)
B. (B) and (C)
C. (A) and (D)
D. (B), (C) and (D).

## Answer: B

## - Watch Video Solution

57. Which one of the following equations does not correctly represent the first law of thermodynamics for the given processes involving an ideal gas ? (Assume non-expansion work is zero)
A. Adiabatic process : $\Delta U=-w$
B. Cyclic process : $q=-w$
C. Isothermal process : $q=-w$
D. Isochoric process : $\Delta U=q$.

Answer: A

## - Watch Video Solution

58. For silver, $C_{P}\left(J K^{-1} \mathrm{~mol}^{-1}\right)=23+0.01 T$. If the temperature $(T)$ of 3 moles of silver is raised from 300 K to 1000 K at 1 atm pressure, the value of $\Delta H$ will be close to :
A. 13 kJ
B. 16 kJ
C. 62 kJ
D. 21 kJ

## - Watch Video Solution

59. 5 moles of an ideal gas at 100 K are allowed to undergo reversible compression till its temperature becomes 200 K. If $C_{V}=28 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, calculate $\Delta U$ and $\Delta p V$.
A. $\Delta U=14 J, \Delta(p V)=0.8 J$
B. $\Delta U=14 k J, \Delta(p V)=4 k J$
C. $\Delta U=14 k J, \Delta(p V)=18 J$
D. $\Delta U=2.8 k J, \Delta(p V)=0.8 k J$.

## Answer: B

## - Watch Video Solution

1. Thermodynamics mainly deals with

## - Watch Video Solution

2. An animal is an open system.

## - Watch Video Solution

3. Volume is an intensive property.

## - Watch Video Solution

4. Which of the following are not state functions ?

Temperature, entropy, heat, work, enthalpy, internal energy.

## - Watch Video Solution

5. For an isobaric process, $\Delta P=0$.

## - Watch Video Solution

6. What is the sign convention for work?

## - Watch Video Solution

7. Work done in the isothermal reversible expansion of a gas is always greater than that done in isothermal irreversible expansion of the gas.

## - Watch Video Solution

8. The total energy of the universe is increasing day by day.

## - Watch Video Solution

9. $\Delta E=E_{\text {initial state }}-E_{\text {final state }}$

## - Watch Video Solution

10. The heat absorbed in a reaction at constant temperature and constant volume is $\qquad$

## - Watch Video Solution

11. A bomb calorimeter measures $\Delta G$ of a combustion process.

## - Watch Video Solution

12. For the reaction,
$Z n(s)+2 H C l(a q) \rightarrow \mathrm{ZnCl}_{2}(a q)+H_{2}(g), \Delta H$ is equal to $\Delta E$.
13. Decomposition of $\mathrm{CaCO}_{3}$ is a reversible reaction when carried out in an open kiln.

## - Watch Video Solution

14. State True/False

All spontaneous process proceed in one direction only.

## - Watch Video Solution

15. The units of $\Delta S$ are $J K^{-1} \mathrm{~mol}^{-1}$.

## - Watch Video Solution

16. The absolute entropy of a liquid is less than of the solid.
17. Is the entropy of the universe constant?

## - Watch Video Solution

18. A process is non-spontaneous when $\Delta S_{\text {total }}<0$.

## - Watch Video Solution

19. For an irreversible process, $\Delta S>0$.

## - Watch Video Solution

20. Heat can be converted completely into equivalent amount of work without producing changes elsewhere.
21. A chemical process always proceeds in the direction in which the Gibbs free energy of the system decreases.

## - Watch Video Solution

22. A process is feasible if $\Delta H$ is positive and $\Delta S$ is negative

## - Watch Video Solution

23. $\Delta G$ is a measure of the net work done by a system. True/False.

## - Watch Video Solution

24. At absolute zero, the entropy of a pure crystal is zero. This is

## - Watch Video Solution

1. Thermodynamics mainly deals with

## - Watch Video Solution

2. A closed system is that which

## - Watch Video Solution

3. A system is said to be in ...... equilibrium when the system and the surroundings are at the same temperature.

## - Watch Video Solution

4. When the work is done by the system, $w$ is taken as
5. Is the entropy of the universe constant ?

## - Watch Video Solution

6. Define isolated system.

## - Watch Video Solution

7. The sum of ...... energy and ...... energy of a system is called enthalpy of the system.

## - Watch Video Solution

8. For the process occurring at constant ....... $\Delta H=\Delta U$.

## - Watch Video Solution

9. A spontaneous process is also called a ...... process.

## - Watch Video Solution

10. Dissolution of sugar in water is accompanied by ...... of entropy of the system.

## - Watch Video Solution

11. A spontaneous process is an ...... process and occurs in ...... direction only.

## - Watch Video Solution

12. The force responsible for the spontaneity of a reaction is called ......
13. The total entropy change ( $\Delta S_{\text {total }}$ ) for the system and surrounding of a spontaneous process is given by

## - Watch Video Solution

14. If $\Delta S_{\text {total }}$ is positive the process is ..... and occurs in the ..... as mentioned. The reverse process is ......

## - Watch Video Solution

15. Whenever a spontaneous process takes place, it is accompanied by an increase in the total ...... of the ......

## - Watch Video Solution

16. When $\Delta G=0$, the process is .......
17. When $\Delta H$ is ngative nad $T \Delta S$ is positive, the process is $\qquad$ at all.

## Watch Video Solution

18. The enthalpy change for a reaction does not depend upon the $\qquad$

## - Watch Video Solution

19. The greater the free energy change, the greater is the amount of work that can be obtained from the process.

## - Watch Video Solution

20. At absolute zero, the entropy of a pure crystal is zero. This is

## Assertion Reason Type Questions

1. The heat absorbed during the isothermal expansion of an ideal gas against vacuum is zero.

The volume occupied by the molecules of an ideal gas is zero.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
B. If both Assertion and Reason are CORRECT but Reason is not the CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: B

## - Watch Video Solution

2. Assertion : The total energy of the universe is constant.

Reason : When a quantity of some form of energy disappears, an exactly equivalent amount of some other form of energy is produced.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
B. If both Assertion and Reason are CORRECT but Reason is not the CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: A

## - Watch Video Solution

3. Assertion : The heat of a reaction does not depend upon the temperature at which reaction is carried out.

Reason : Temperature is a state function.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
B. If both Assertion and Reason are CORRECT but Reason is not the CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: D

## D Watch Video Solution

4. Assertion : The heat of neutralisation for a strong acid and a weak base is always equal to -57.1 kJ .

Reason : One gram equivalent of a strong acid always neutralises one gram equivalent of a weak base.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
B. If both Assertion and Reason are CORRECT but Reason is not the CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: D

## - Watch Video Solution

5. Assertion : The bond energy and bond formation energy of a particular bond are equal in magnitude but opposite in sign.

Reason : The process of bond formation requires absorption of energy but the process of breaking of bond involves liberation of energy.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
B. If both Assertion and Reason are CORRECT but Reason is not the CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: C

## - Watch Video Solution

6. Assertion : The sun is the ultimate source of all types of energies and sustains life on earth.

Reason : The solar energy gets converted into all types of energies present on the earth.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
B. If both Assertion and Reason are CORRECT but Reason is not the CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: A

## - Watch Video Solution

7. Assertion : A perpetual machine can produce work continuously without consuming energy.

Reason : Energy can be converted from one form to another.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
B. If both Assertion and Reason are CORRECT but Reason is not the CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: D

## - Watch Video Solution

8. Assertion : Burning of coal is a spontaneous process.

Reason : Coal when ignited burns of its own accord without any outside assistance.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
B. If both Assertion and Reason are CORRECT but Reason is not the CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: A

## - Watch Video Solution

9. Assertion : All spontaneous processes are thermodynamically irreversible.

Reason:In a reversible isothermal process, there is no net change in entropy.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
B. If both Assertion and Reason are CORRECT but Reason is not the CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: B

## - Watch Video Solution

## Numberical Problems

1. Calculate the free energy change when one mole of sodium chloride is dissolved in water at 298 K . (Given : Lattice energy of NaCl $=-777.8 \mathrm{kJmol}^{-1}$, Hydration energy of NaCl $=774.1 \mathrm{kJmol}^{-1}$ and $\Delta S$ at $298 \mathrm{~K}=0.043 \mathrm{kJmol}^{-1}$.

## - Watch Video Solution

2. Calculate the value of equilibrium constant, K for the following reaction at 400 K .
$2 \mathrm{NOCl}(g) \Leftrightarrow 2 N O(g)+\mathrm{Cl}_{2}(g)$
$\Delta H^{\circ}=80.0 \mathrm{kJmol}^{-1}, \Delta S^{\circ}=120 \mathrm{KJ}^{-1} \mathrm{~mol}^{-1}$ at $400 \mathrm{~K}, \mathrm{R}=$ 8.31 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

## - Watch Video Solution

3. Calculate the standard free energy change for the following reaction at $27^{\circ} \mathrm{C}$.
$H_{2}(g)+I_{2}(g) \rightarrow 2 H I(g), \Delta H^{\circ}=+51.9 k J$
[Given : $\Delta S_{H_{2}}^{\circ}=130.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\Delta S_{I_{2}}^{\circ}=116.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\left.\Delta S_{H I}^{\circ}=206.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$.
Predict whether the reaction is feasible at $27^{\circ} \mathrm{C}$ or not.

## - Watch Video Solution

4. Using the data given below, calculate the value of equilibrium constant for the reaction

$$
3 H C \equiv C H(g) \Leftrightarrow \underset{\text { acetylene }}{C_{6} H_{6}(g)}
$$

at 298 K , assuming ideal behaviour.
$\Delta_{f} G^{\circ} H C \equiv C H(g)=2.09 \times 10^{5} \mathrm{Jmol}^{-1}$,
$\Delta_{f} G^{\circ} C_{6} H_{6}(g)=1.24 \times 10^{5} \mathrm{Jmol}^{-1}$
$R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

## - Watch Video Solution

5. Give the reaction for preparing benzene.

## - Watch Video Solution

6. A gas expands from $3 d m^{3}$ to $5 d m^{3}$ against a constant pressure of 3.0 atm . The work done during expansion is used to heat 10 moles of water at temperature 290 K. Calculate the final temperature of water. Specific heat of water $=4.184 \mathrm{JK}^{-1} \mathrm{~g}^{-1}$.
7. The enthalpy change involved in the oxidation of glucose is $-2880 \mathrm{kJmol}^{-1}$. Twenty five per cent of this energy is available for muscular work. If 100 kJ of muscular work is needed to walk one kilometre, what is the maximum distance that a person will be able to walk eating 120 g of glucose ?

## - Watch Video Solution

8. 10 g of argon is compressed isothermally and reversibly at a temperature of $27^{\circ} C$ from 10 L to 5 L . Calculate , $\mathrm{w}, \Delta E$ and $\Delta H$ for the process. $R=2.0 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}, \log 2=0.30$, At. Wt. of argon $=40$.

## - Watch Video Solution

9. Using data (all values are in kilocalorie per mole at $25^{\circ} \mathrm{C}$ ) given below, calculate the bond energy of $C-C$ and $C-H$ bonds.
$\Delta H^{\Theta}$ combustion of ethane $=-372.0$
$\Delta H^{\Theta}$ combustion of propane $=-530.0$
$\Delta H^{\Theta}$ for $C$ (garphite) $\rightarrow C(g)=+172.0$
Bond enegry of $H-H$ bond $=+104.0$
$\Delta_{f} H^{\Theta}{ }_{o f H_{2}} O(l)=-68.0$
$\Delta_{f} H^{\Theta} o f C_{2}(g)=-94.0$

## - Watch Video Solution

10. An athlete is given 100 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ of energy equivalent to 1560 kJ . He utilises $50 \%$ of this gained energy in the event. In order to avoid the storage of energy in the body, calculate the weight of water he would need to perspire. The enthalpy of evaporation of water is $44 \mathrm{kJmol}^{-1}$.

## - Watch Video Solution

11. The standard enthalpy of formation of $\mathrm{H} 2 \mathrm{O}(\mathrm{I})$ and Fe 2 O 3 (s) are respectively $-286 \mathrm{~kJ} \mathrm{~mol}-1$ and $-824 \mathrm{~kJ} \mathrm{~mol}-1$. What is the standard
enthalpy change for the following reaction?
$\mathrm{Fe} 2 \mathrm{O} 3(\mathrm{~s})+3 \mathrm{H} 2(\mathrm{~g}) \longrightarrow 3 \mathrm{H} 2 \mathrm{O}(\mathrm{l})+2 \mathrm{Fe}(\mathrm{s})$

## - Watch Video Solution

12. The enthalpies of formation of $\mathrm{CO} 2(\mathrm{~g}), \mathrm{H} 2 \mathrm{O}(\mathrm{I})$ and $\mathrm{C} 2 \mathrm{H} 4(\mathrm{~g})$ are respectively $-393.5,-286$ and $+52.3 \mathrm{kJmol}-1$. The enthalpy change for the combustion of $\mathrm{C} 2 \mathrm{H} 4(\mathrm{~g})$ is ?

## - Watch Video Solution

13. The heat of combustion of acetylene is 312 kcal . If the heat of formation of $\mathrm{CO}_{2}$ is 94.38 kcal and that of water is 63.38 kcal , calculate $C \equiv C$ bond energy assuming that the bond energy of C-H is 93.6 kcal . Heat of atomisation of carbon and hydrogen are 150 and 51.5 kcal respectively.
14. If a man submits to a diet of 9500 kJ per day and expands energy in all forms to a total of 12000 kJ per day, what is the change in internal energy per day? If the energy lost was stored as sucrose ( 1632 kJ per 100 g), how many days should it take to lose 1 kg ? (Ignore water loss for this problem.)

## - Watch Video Solution

15. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+394 k J$
$C(s)+\frac{1}{2} O_{2}(g) \rightarrow C O+111 k J$
In an oven using coal (assume the coal is $80 \% \mathrm{C}$ in weight), insufficient oxygen is supplied such that $60 \%$ of carbon is converted to $\mathrm{CO}_{2}$ and $40 \%$ of carbon is converted to CO. Find out the heat generated when 10 kg of coal is burnt in this fashion.

## - Watch Video Solution

16. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+394 k J$
$C(s)+\frac{1}{2} O_{2}(g) \rightarrow C O+111 k J$
Calculate the heat generated if efficiency of oven is $10.8 \%$ and a fully efficient oven converts all the carbon to $\mathrm{CO}_{2}$

## - Watch Video Solution

17. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+394 k J$
$C(s)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}+111 \mathrm{~kJ}$
Calculate the percentage loss in heating value for the inefficient oven.

## - Watch Video Solution

18. Gobar gas obtained by bacterial fermentation of animal refuse contains mainly methane. The heat of combustion of methane to $\mathrm{CO}_{2}$ and water (gas) is given by
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+809 k J$.

How much gobar gas would have to be produced per day for a small village community of 100 families, if we assume that each family has to be supplied $20,000 \mathrm{~kJ}$ of energy per day to meet all its needs and that the methane content in gobar gas is $80 \%$ by weight?

## - Watch Video Solution

## Ncert Text Book Exercises

1. Choose the correct answer.

A thermodynamic state function is a quantity.
(a) used to determine heat changes.
(b) whose value is independent of path.
(c) used to determine pressure volume work.
(d) whose value depends on temperature only.
A. used to determine heat changes
B. whose value is independent of path
C. used to determine pressure volume work
D. whose value depends on temperature only.

## Answer: B

## - Watch Video Solution

2. For the process to occur under adiabatic conditions, the correct condition is
A. $\Delta T=0$
B. $\Delta p=0$
C. $\Delta q=0$
D. $w=0$

## Answer: C

3. The enthalpies of all elements in their standard states are
A. unity
B. zero
C. $<0$
D. different for each element.

## Answer: B

## - Watch Video Solution

4. $\Delta U^{\circ}$ of combustion of methane is $-X \mathrm{kJmol}^{-1}$. The value of $\Delta H^{\circ}$ is
A. $=\Delta U^{\circ}$
B. $>\Delta U^{\circ}$
C. $<\Delta U^{\circ}$
D. $=0$

## Answer: C

## - Watch Video Solution

5. The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are, $-890.3 \mathrm{kJmol}^{1}-393.5 \mathrm{kJmol}^{-1}$, and $-285.8 \mathrm{kJmol}^{-1}$ espectively. Enthalpy of formation of $\mathrm{CH}_{4}(\mathrm{~g})$ will be
A. $-74.9 \mathrm{kJmol}^{-1}$
B. $-52.27 \mathrm{kJmol}^{-1}$
C. $+74.8 \mathrm{kJmol}^{-1}$
D. $+52.26 \mathrm{kJmol}^{-1}$

Answer: A

## Watch Video Solution

6. A reaction $A+B \rightarrow C+D+q$ is found to have a positive entropy change. The reaction will be
A. possible at high temperature
B. possible only at low temperature
C. not possible at any temperature
D. possible at any temperature.

## Answer: D

## - Watch Video Solution

7. In a process, 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy of the process?

## - Watch Video Solution

8. The reaction of cyanamide, $\mathrm{NH}_{2} \mathrm{CN}(s)$, with dioxygen was carried out in a bomb calorimeter, and $\Delta U$ was found to be $-742.7 \mathrm{kJmol}^{-1}$ at 298 K. Calculate enthalpy change for the reaction at 298 K .
$\mathrm{NH}_{2} \mathrm{CH}(\mathrm{g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(1)$

## - Watch Video Solution

9. Calculate the number of kJ of heat necessary to raise the temperature of 60.0 g of aluminium from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Molar heat capacity of Al is $24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

## - Watch Video Solution

10. The enthalpy change on freezing of 1 mol of water at $5^{\circ} \mathrm{C}$ to ice at $-5^{\circ} \mathrm{C}$ is :
(Given $\Delta_{\text {fus }} H=6 K \mathrm{Jmol}^{-1}$ at $0^{\circ} C$,
$C_{p}\left(H_{2} O, l\right)=75.3 \mathrm{Jmol}^{-1} K^{-1}$,
$\left.C_{p}\left(H_{2} \mathrm{O}, \mathrm{S}\right)=36.8 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$

## - Watch Video Solution

11. Enthalpy of combustion of carbon to $\mathrm{CO}_{2}$ is $-393.5 \mathrm{kJmol}^{-1}$

Calculate the heat released upon formation of 35.2 g of $\mathrm{CO}_{2}$ from carbon and dioxygen gas.

## - Watch Video Solution

12. Enthalpies of formation of $\mathrm{CO}(\mathrm{g}) \cdot \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ are $-110,-393,81$ and $9.7 \mathrm{kJmol}^{-1}$ respectively. Find the value of $\Delta_{r} H$ for the reaction :
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+3 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{Co}_{2}(\mathrm{~g})$

## - Watch Video Solution

13. Given
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta_{r} H^{\ominus}=-92.4 \mathrm{kJmol}^{-1}$
What is the standard enthalpy of formation of $\mathrm{NH}_{3}$ gas?

## - Watch Video Solution

14. Calculate the standard enthalpy of formation of $\mathrm{CH}_{3} \mathrm{OH}(l)$ from the following data
$\mathrm{CH}_{3} \mathrm{OH}(i)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(1), \Delta_{r} \mathrm{H}^{\ominus}=-726 \mathrm{kJmol}^{-1}$
$\mathrm{C}($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta_{c} \mathrm{H}^{\ominus}=-393 \mathrm{kJmol}^{-1}$
$\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(1), \Delta(f) H^{\ominus}=-286 \mathrm{kJmol}^{-1}$

## - Watch Video Solution

15. Calculate the enthalpy change for the process

$$
C C I_{4}(g) \rightarrow C(g)+4 C I(g)
$$

$\Delta_{\text {vap }} H^{\ominus}\left(C C I_{4}\right)=30.5 \mathrm{kJmol}^{-1}$
$\Delta_{f} H^{\ominus}\left(C C I_{4}\right)=-135.5 \mathrm{kJmol}^{-1}$
$\Delta_{a}(C)=715.0 \mathrm{kJmol}^{-1}$, where $\Delta_{a} H^{\ominus}$ is enthalpy of atomisation
$\Delta_{a} H^{\ominus}\left(C I_{2}\right)=242 \mathrm{kJmol}^{-1}$

## - Watch Video Solution

16. For an isolated system, $\Delta U=0$, what will be $\Delta S$ ?

## - Watch Video Solution

17. For the reaction at 298 K ,
$2 A+B \rightarrow C$
$\Delta H=400 \mathrm{KJmol}^{-1}$ and $\Delta S=0.2 k J K^{-1} \mathrm{~mol}^{-1}$
At what temperature will the reaction become spontaneous considering
$\Delta H$ and $\Delta S$ o be constant over the temperature range.
18. For the reaction, $2 C l(g) \rightarrow C l_{2}(g)$, what are the signs of $\Delta H$ and $\Delta S$ ?

## - Watch Video Solution

19. For the reaction
$2 A(g)+B(g) \rightarrow 2 D(g)$
$\Delta U^{\theta}=-10.55 K J$ and $\Delta S^{\theta}=-44.1 J K^{-1}$
Calculate $\Delta G^{\ominus}$ for the reaction, and predict whether the reaction may occur spontaneously

## - Watch Video Solution

20. The equilibrium constant for a reaction is 10 . What will be the value of $\Delta G^{\circ} ? R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, T=300 \mathrm{~K}$.

## - Watch Video Solution

21. Comment on the thermodynamic stability of $\mathrm{NO}_{(g)}$, given $\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow N O(g) \quad: \quad \Delta_{r} H^{\theta}=90 \mathrm{kJmol}^{-1}$ $\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) \quad: \quad \Delta_{r} H^{\theta}=-74 \mathrm{kJmol}^{-1}$

## - Watch Video Solution

22. Calculate the entropy change in surroundings when 1.00 mole of $\mathrm{H}_{2} \mathrm{O}(l)$ is formed under standard conditions.
$\Delta_{f} H^{\circ}=-286 \mathrm{kJmol}^{-1}$

- Watch Video Solution

