# ©゙doubtnut 

India's Number 1 Education App

## CHEMISTRY

## BOOKS - NAGEEN CHEMISTRY (ENGLISH)

## EQUILIBRIUM

## Example

1. At $20^{\circ} \mathrm{C}$ the solubility of $N_{2}$ gas in water is $0.0150 \mathrm{~g} L^{-1}$ when the partial pressure of the gas is 580 torr. Find the solubility of nitrogen in water at $20^{\circ} \mathrm{C}$ when the partial pressure is 800 torr.

## - Watch Video Solution

2. The solubility of sodium chloride in water is $6.150 \mathrm{molL}^{-1}$ at $20^{\circ} \mathrm{C} .80 \mathrm{~g}$ of sodium chloride is dissolved in $100 \mathrm{~cm}^{3}$ of water at $20^{\circ} \mathrm{C}$. How much
sodium chloride is left undissolved ? After equilibrium is reached, an additional 50 cm of water is added to the system at the same temperature. Find the amount of NaCl present in the solution and in the undissolved state.

## - Watch Video Solution

3. Write the equilibrium constant expressions for the following reactions.

$$
\mathrm{N}_{2} \mathrm{O}_{4} g \Leftrightarrow 2 \mathrm{NO}_{2}(g)
$$

## - Watch Video Solution

4. Write the equilibrium constant expressions for the following reactions.
$\mathrm{Cr}_{2} \mathrm{O}_{4}^{2-}(a q)+\mathrm{Pb}^{2+}(a q) \Leftrightarrow \mathrm{PbCrO}_{4}(s)$

## - Watch Video Solution

5. Write the equilibrium constant expressions for the following reactions.

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{NH}_{4}^{+}(a q)+O H^{-}(a q)
$$

## Watch Video Solution

6. Write the equilibrium constant expressions for the following reactions.
$\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$

## - Watch Video Solution

7. Write the equilibrium constant expressions for the following reactions.
$C u(s)+2 A g^{+}(a q) \Leftrightarrow C u^{2+}(a q)+2 A g(s)$

## - Watch Video Solution

8. Write the equilibrium constant expressions for the following reactions.
$A g C l(s) \Leftrightarrow A g^{+}(a q)+C l^{-}(a q)$
9. Write the equilibrium constant expressions for the following reactions.
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$

## - Watch Video Solution

10. In the following reactions

$$
H_{2}+I_{2} \Leftrightarrow 2 H I
$$

The amount of $\mathrm{H}_{2}, I_{2}$ and HI are $0.2 \mathrm{~g}, 9.525 \mathrm{~g}$ and 44.8 g respectively at equilibirum at a certain temperature Calculates the equilibrium constant of the reactions.

## - Watch Video Solution

11. 1 mole of $\mathrm{H}_{2} \mathrm{O}$ and 1 mole of CO are taken in a 10 litre vassel and heated to 725 K.At equilibrium 40 per cent of water (by mass ) reacts with carbon monoxide according to the equation

## $\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(g)$

Calculate the equilibrium constant for the reactions.

## - Watch Video Solution

12. One mole of nitrogen is mixed with three moles of hydrogen in a 4 litre container. If 0.25 per cent of nitrogen is converted into ammonia by the following reaction

$$
N_{2}(g)+3 H_{2} \Leftrightarrow 2 N_{3}(g)
$$

calculate the equilibrium constant of the reaction in concentration units.
What will be the value of $K$ for the following reaction?
$\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2} \Leftrightarrow N H_{3}(g)$

## - Watch Video Solution

13. $P C I_{5}$ is $47.1 \%$ dissociated at $18^{\circ} \mathrm{C}$ and one atmospheric pressure.

Calculate the value of $K_{p}$.
14.3 moles of $\mathrm{H}_{2}$ and 2 moles of $I_{2}$ were heated in a 2 litre vessel at 717 K till the equilibrium was reached. Assuming that the equilibrium constant is 48 , calculate the equilibrium concentrations of $\mathrm{H}_{2} \mathrm{I}_{2}$ and $H I$.

## - Watch Video Solution

15. How much $P C I_{5}$ must be taken in a 9.2 L vessel to get 0.5 moles of $C l_{2}$ at a particular temperature? The value of equilibrium constant $\left(K_{c}\right)$ at the given temperature is 0.0414 .

## - Watch Video Solution

16.25 moles of $H_{2}$ and 18 moles of $l_{2}$ vapour were heated in a sealed tube at $445^{\circ} \mathrm{C}$ when at equilibrium 30.8 moles of HI were formed. Calculate the degree of dissociation of pure Hl at the given temperature,
17. Calculate the degree of ionisation and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a 0.15 M $\mathrm{CH}_{3} \mathrm{COOH}$ solution. The dissociation constant of acetic acid is $1.8 \times 10^{-5}$

## - Watch Video Solution

18. At $298 \mathrm{~K}, 0.01 \mathrm{M}$ solution of ammonium hydroxide is $4.2 \%$ ionised.

Calculate the ionisation constant of the base.

## - Watch Video Solution

19. The dissociation constant of acetic acid is $1.8 \times 10^{-5}$ at 298 K .

Calculate its degree of dissociation and $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration in its 0.1 M solution.

## - Watch Video Solution

20. Calculate the concentration of hydroxyl ions in a 0.1 M solution of ammonia if the value of $K_{b}$ is $1.76 \times 10^{-5}$

## Watch Video Solution

21. Calculate the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in a mixture of 0.03 M acetic acid and 0.1 M sodium acetate. Ionisation constant for acetic acid is $1.8 \times 10^{-5}$

## - Watch Video Solution

22. A dilute solution of HCl contains $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-5.4 \times 10^{-5} \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1}$ at 298 K . What is the concentration of hydroxyl ions in this solution?

## - Watch Video Solution

23. Calculate the hydronium ion and hydroxyl ion concentrations in
(1) 0.001 M HCl
(ii) 0.01 M NaOH
at 298 K assuming that both HCl and NaOH are completely ionised

## - Watch Video Solution

24. Calculate the pH value of the following
0.001 M HCI

## - Watch Video Solution

25. Calculate the pH value of the following 0.01 M NaOH .

## - Watch Video Solution

26. The hydronium lon concentration of a fruit juice is $4.6 \times 10^{-4} \mathrm{~mol} L^{-1}$. What is the pH of the juice?

## Watch Video Solution

27. Calculate the pH value of $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ if it is $5 \%$ dissociated.

## - Watch Video Solution

28. A solution of NaOH is prepared by dissolving 1.5 g of the base in 500 mL of water. Calculate the pH of the solution.

## - Watch Video Solution

29. Calculate the pH of
$0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
30. The pH of $0.001 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution will be

## - Watch Video Solution

31. At 298 K , the pH of a solution of lemon juice is 2.32 . What are the conc. Of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in this solutions?

## - Watch Video Solution

32. Calculate the pH of 0.01 m Solution of $\mathrm{CH}_{3} \mathrm{COOH}$. The dissociation constant of the acid is $1.8 \times 10^{-5}$

## - Watch Video Solution

33. The ionisation constant of methylamine $\left(\mathrm{CH}_{3} N H_{2}\right)$ is $4.4 \times 10^{-5}$.

Calculate the pH of its 0.2 M solutions.
34. Calculate the pH of a buffer solution containing 0.15 mole of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ per litre. The dissociation constant for acetic acid $1.8 \times 10^{-5}$

## - Watch Video Solution

35. How much $\mathrm{CH}_{3} \mathrm{COONa}$ should be added to 1 litre of 0.01 M $\mathrm{CH}_{3} \mathrm{COOH}$ to make . A buffer of $\mathrm{pH}=4.1$ ?
$\left(K_{a}\right.$ for $\left.\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}\right)$

## - Watch Video Solution

36. A buffer solution contains 0.02 moles of $\mathrm{NH}_{4} \mathrm{OH}$ and 0.03 moles of $\mathrm{NH}_{4} \mathrm{CI}$ dissolved in 1 litre of the solution. Calculate the pH of the solution. Dissociation constant of $\mathrm{NH}_{4} \mathrm{OH}$ is $1.8 \times 10^{-5}$
37. A buffer solution contains 0.15 moles of acetic acid and 0.20 moles of potassium acetate per litre. The dissociation constant of acetic acid at room temperature is $1.76 \times 10^{-5}$

Calculate the pH of the solution.

## - Watch Video Solution

38. A buffer solution contains 0.15 moles of acetic acid and 0.20 moles of potassium acetate per litre.

What would be the change in pH of the solution, if 0.5 mL of 1 M HCl is added to it? Assume that the volume is unchanged. The dissociation constant of acetic acid at room temperature is $1.76 \times 10^{-5}$

## - Watch Video Solution

39. The pH of an acidic buffer is 4.8794 . Its pH changes to 4.8864 on addition of 0.005 moles of NaOH to 1 litre of the solution. Calculate its
buffer capacity.

## - Watch Video Solution

40. The solubility of AgCl at 298 K is $1.3 \times 10^{-5} \mathrm{~mol} L^{-1}$ Calculate the value of $K_{s p}$ at this temperature.

## - Watch Video Solution

41. The solubility of $\mathrm{CaF}_{2}$ in water at 298 K is $1.7 \times 10^{-3}$ grams per $100 \mathrm{~cm}^{3}$. Calculate the solubility product of $C a F_{2}$ at 298 K .

## - Watch Video Solution

42. The solubility product of $\mathrm{PbCl}_{2}$ at 298 K is $7.1 \times 10^{-5}$ Calculate the solubility of $\mathrm{PbCl}_{2}$ in $g L^{-1}$ at 298 K .
43. The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ in pure water is $9.57 \times 10^{-3} g L^{-1}$ Calculate its solubility I $\left(\mathrm{gL}^{-1}\right)$ in $0.02 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ solutions.

## - Watch Video Solution

44. If $25 . \mathrm{cm}^{3}$ of $0.050 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ are mixed with $25.0 \mathrm{~cm}^{3}$ of 0.020 M NaF, will any $\mathrm{BaF}_{2}$ precipitated $K_{s p}$ of $B a F_{2}$ is $1.7 \times 10^{-6}$ at $298 K$.

## - Watch Video Solution

45. The solubility product of $\mathrm{BaSO}_{4}$ at 298 K is $1.08 \times 10^{-10}$. What is the minimum concentration of $\mathrm{SO}_{4}^{2-}$ ions required to precipitate $\mathrm{BaSO}_{4}$ from a 0.01 M solution of $\mathrm{BaCl}_{2}$

## - Watch Video Solution

46. Calculate the hydrolysis constant. Degree of hydrolysis and pH of a 0.1 M $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $25^{\circ} \mathrm{C}$ Given : $\mathrm{K}_{b}$ for $\mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5}$

## Watch Video Solution

47. Calculate the hydrolysis constant. Degree of hydrolysis and pH of a 0.5 Sodium acetate solution at room temperature ( $K_{a}$ for acetic acid $\left.=1.75 \times 10^{-5}\right)$

## - Watch Video Solution

48. Calculate the hydrolysis constant, degree of hydrolysis and pH of a 0.1
$M$ aqueous solution of ammonium cyanide at room temperature.
$\left(K_{a}=9.55 \times 10^{-10} K_{b}=1.8 \times 10^{-5}\right.$ and $\left.K_{w} 1.0 \times 10^{-14}\right)$

## - Watch Video Solution

1. Why does a person sweat more at Mumbai as compared to one in Delhi even when the temperature of the two towns is the same?

## - Watch Video Solution

2. The equilibrium vapour pressure of water, ethyl alcohol and acetone at 293 K are $2.34,5.85$ and 12.36 kPa respectively. Which of these will have the lowest and highest boiling points? At 293 K Which of these will Evaporate least in a sealed container before equilibrium is established?

## - Watch Video Solution

3. The solubility of pure oxygen in water at $20^{\circ} \mathrm{C}$ and one atmosphere pressure is $1.38 \times 10^{-3} \mathrm{~mol} L^{-1}$ Calculate the concentration of oxygen at $20^{\circ} \mathrm{C}$ and partial pressure of 0.21 atm .
4. State the expression which attains a constant value in each of the following equilibria.

Urea (s) $\Leftrightarrow$ Urea (solution)

## - Watch Video Solution

5. State the expression which attains a constant value in each of the following equilibria.
$O_{2}(g) \Leftrightarrow O_{2}(a q)$

## - Watch Video Solution

6. State the expression which attains a constant value in each of the following equilibria.

Ice $\Leftrightarrow H_{2} O(l)$
7. Can equilibrium be achieved between water and its vapour in an open vassel ? Explain.

## - Watch Video Solution

8. What do you understand by the state of euqilibrium and how is it achieved in a chemical process?

## - Watch Video Solution

9. How is liquid -vapour equilibrium attained in a closed vessel.

## - Watch Video Solution

10. What is meant by irreversible and reversible reactions? Give two examples each.
11. What do you understand by the dynamic nature of equilibrium? Explain with an example.

## - Watch Video Solution

12. There cannot be chemical equilibrium in an open system.

There is no fixed mass in an open system.

## - Watch Video Solution

13. What is concentration quotient and what is its significance?

## - Watch Video Solution

14. Write the equilibrium constant expression for the following equilibria:
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
15. Write the equilibrium constant expression for the following equilibria:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

## - Watch Video Solution

16. Write the equilibrium constant expression for the following equilibria:
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$

## - Watch Video Solution

17. Find out the units of $K_{c}$ and $K_{p}$ for the following equilibrium reactions:
$P C l_{5}(g) \Leftrightarrow P C l_{3}+C l_{2}(g)$

## - Watch Video Solution

18. Find out the units of $K_{c}$ and $K_{p}$ for the following equilibrium reactions:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

## - Watch Video Solution

19. The value of the equilibrium constant $K$ for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{Hl}(\mathrm{g})$ is 48 at 717 K.

Find out the value of $K$ for the following reaction at
$H l(g) \Leftrightarrow \frac{1}{2} H_{2}(g)+\frac{1}{2} I_{2}(g)$

## - Watch Video Solution

20. What will be the effect on the equilibrium constant on increasing temperature if the reaction neither absorbs heat nor releases heat?

## - Watch Video Solution

21. Write the equilibrium constant expression for the following reactions :

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

## - Watch Video Solution

22. Write the equilibrium constant expression for the following reactions
:
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

## - Watch Video Solution

23. Write the equilibrium constant expression for the following reactions
:

$$
C O_{2}(g) \Leftrightarrow C O_{2}(a q)
$$

## - Watch Video Solution

24. Write the equilibrium constant expression for the following reactions :
$F e^{3+}(a q)+S C N^{-}(a q) \Leftrightarrow F e S C N^{2+}(a q)$

## - Watch Video Solution

25. The equilibrium constant for the reactions
$C u(s)+2 A g^{+} a q \Leftrightarrow C u^{2+}(a q)+2 A g(s)$
is $2.0 \times 10^{15}$ at 278 K . Find the equilibrium concentration of $\mathrm{Cu}^{2+}$ (aq) if that of $\mathrm{Ag}^{+}(\mathrm{aq})$ is $1.0 \times 10^{-11} \mathrm{~mol} L^{-1}$

## - Watch Video Solution

26. The value of $K_{P}$ for the reactions $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g), \quad$ is $4.28 \times 10^{-5}$ at $450^{\circ} \mathrm{C}$. A reaction mixture contains $\mathrm{N}_{2}, \mathrm{H}_{2}$ and $\mathrm{NH}_{3}$ at partial pressures of $0.6 \mathrm{~atm}, 2.5$ atm and 0.50 atm respectively. In which direction the reaction will proceed?

## - Watch Video Solution

27. 256 g of HI were heated in a sealed bulb at $444^{\circ} \mathrm{C}$ till the equilibrium was attained. The acid was found to be $22 \%$ dissociated at equilibrium.

Calculate the equilibrium constant for the reaction
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

## Watch Video Solution

28. One mole of $\mathrm{PCl}_{5}$ is heated in a 2 L vessel. When equilibrium is attained, the vessel is found to contain 0.2 moles of $P C l_{5}$ Calculate the equilibrium constant.

## - Watch Video Solution

29. The value of $K_{C}$ for the reactions

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g) .
$$

is $6.0 \times 10^{-2}$ at 773 K . Calculate the value of $K_{P}$ at the given temperature.

## - Watch Video Solution

30. Find the units of $K_{P}$ and $K_{C}$ for the following reactions.
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$

## - Watch Video Solution

31. Find the units of $K_{P}$ and $K_{C}$ for the following reactions.
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

## - Watch Video Solution

32. Find out the units of $K_{c}$ and $K_{p}$ for the following equilibrium reactions:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
33. The equilibrium constant at 278 K for
$C u(s)+2 A g^{+}(a q) \Leftrightarrow C u^{2+}(a q)+2 A g(s)$
is $2.0 \times 10^{15}$. At a particular moment, the concentration of $\mathrm{Cu}^{2+}$ and $\mathrm{Ag}^{+}$ions are found to be $1.8 \times 10^{-2} \mathrm{~mol} L^{-1}$ and $3.0 \times 10^{-9} \mathrm{~mol} L^{-1}$
respectively. Is the system in equilibrium at that moment?

## - Watch Video Solution

34. A mixture of $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and $\mathrm{O}_{2}$ gases is maintained in a 10 L flask at a temperature at which the equilibrium constant $\left(K_{c}\right)$ for the reactions $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ is 100 . If the number of moles of $\mathrm{O}_{2}$ are present?

## - Watch Video Solution

35. The equilibrium constant ( $K_{P}$ ) of the reactions $N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$ was found to be 636 mm at $49.7^{\circ} \mathrm{C}$. Calculate the percentage dissociation of $N_{2} O_{4}$ when the pressure of the gas mixture is 182 mm .

## - Watch Video Solution

36. Discuss the effect of increase of pressure on the following reactions
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

## - Watch Video Solution

37. Discuss the effect of increase of pressure on the following reactions
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

## - Watch Video Solution

38. In which direction is equilibrium expected to shift on increasing temperature in the following reactions?

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}),
$$

$$
\Delta H=+212.8 \mathrm{kcal}
$$

## - Watch Video Solution

39. In which direction is equilibrium expected to shift on increasing temperature in the following reactions?

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(g)
$$

$$
\Delta H=-42 \mathrm{kcal}
$$

## (D) Watch Video Solution

40. Discuss the conditions for obtaining the maximum yield in the following reactions.

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g),
$$

$$
\Delta H=-43.2 \mathrm{kcal}
$$

## Watch Video Solution

41. Discuss the conditions for obtaining the maximum yield in the following reactions.

$$
N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g),
$$

$\Delta H=43.2 \mathrm{kcal}$

## - Watch Video Solution

42. For a general reactions
$2 A+B \Leftrightarrow C+3 D, \Delta H=+x k c a l$
What will be the effect of
decrease in volume?

## - Watch Video Solution

43. For a general reactions
$2 A+B \Leftrightarrow C+3 D, \Delta H=+x k c a l$

What will be the effect of increase in temperature ?

## - Watch Video Solution

44. For a general reactions
$2 A+B \Leftrightarrow C+3 D, \Delta H=+x k c a l$
what is the effect of increase of pressure at equilirbrium?

## - Watch Video Solution

45. Wet clothes dry quicker when there is a breeze because

## - Watch Video Solution

46. Sort out strong, electrolytes, weak electrolytes and non-electrolytes fromt the following : $\mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2} \mathrm{NH}_{4} \mathrm{Cl}$, Urea $\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{HCN}, \mathrm{CH}_{3} \mathrm{COOH}$, Glucose.
47. A weak acid HA is found to be $3 \%$ dissociated in 0.1 M solution .

Calculate the value of $K_{a}$

## - Watch Video Solution

48. The dissociations constant of HCN is $7.24 \times 10^{-10}$ Calculate its degree of dissociation and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 0.01 M solutions.

## - Watch Video Solution

49. Comment on the statement : All Arrhenius acids are Bronsted acids but all Arrhenius bases may not be Bronsted bases.

## - Watch Video Solution

50. Write the correctly balanced net ionic equations for the reations whose equilibrium constant at 298 K are
$K_{a}\left(H_{2} S\right)=1.0 \times 10^{-7}$

## - Watch Video Solution

51. Write the correctly balanced net ionic equations for the reations whose equilibrium constant at 298 K are
$K_{b}\left(N H_{3}\right)=1.8 \times 10^{-5}$

## - Watch Video Solution

52. Write the correctly balanced net ionic equations for the reations whose equilibrium constant at 298 K are
$K_{a}\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=5.4 \times 10^{-2}$

## - Watch Video Solution

53. Write the correctly balanced net ionic equations for the reations whose equilibrium constant at 298 K are

$$
K_{b}\left(\mathrm{CH}_{3} N H_{2}\right)=4.4 \times 10^{-5}
$$

## - Watch Video Solution

54. Write the formula and the name of conjugate base of the following acids :

$$
\mathrm{H}_{3} \mathrm{O}^{+}
$$

## - Watch Video Solution

55. Write the formula and the name of conjugate base of the following acids :
$\mathrm{HSO}_{4}^{-}$

## - Watch Video Solution

56. Write the formula and the name of conjugate base of the following acids :
$\mathrm{NH}_{4}^{+}$

## - Watch Video Solution

57. Write the formula and the name of conjugate base of the following acids :

## $H F$

## - Watch Video Solution

58. Write the formula and the name of conjugate acid of each of the following acids :
$\mathrm{CH}_{3} \mathrm{COO}^{-}$

## - Watch Video Solution

59. Write the formula and the name of conjugate base of the following acids :
$\mathrm{H}_{3} \mathrm{PO}_{4}$

## - Watch Video Solution

60. Write the formula and the name of conjugate base of the following acids :

## $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

## - Watch Video Solution

61. Write the formula and the name of conjugate base of the following acids :
$\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$
62. Write the formula and the name of conjugate acid of each of the following acids :
$\mathrm{OH}^{-}$

## - Watch Video Solution

63. Write the formula and the name of conjugate acid of each of the following acids :
$\mathrm{HPO}_{4}^{2-}$

## - Watch Video Solution

64. Write the formula and the name of conjugate acid of each of the following acids :
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

## - Watch Video Solution

65. Write the formula and the name of conjugate acid of each of the following acids :
$\mathrm{CO}_{3}^{2-}$

## - Watch Video Solution

66. Write the formula and the name of conjugate acid of each of the following acids :
$H S^{-}$

## - Watch Video Solution

67. Write the formula and the name of conjugate acid of each of the following acids :
$\mathrm{CH}_{3} \mathrm{COO}^{-}$

## - Watch Video Solution

68. Write the formula and the name of conjugate acid of each of the following acids :
$C N^{-}$

## - Watch Video Solution

69. Write the formula and the name of conjugate acid of each of the following acids :
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

## - Watch Video Solution

70. Write the formula and the name of conjugate acid of each of the following acids :
$\mathrm{NH}_{3}$

## - Watch Video Solution

71. Sort out the conjugate pairs of acid and bases in the following reactions :

$$
\mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)
$$

## - Watch Video Solution

72. Sort out the conjugate pairs of acid and bases in the following reactions :
$\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)$.

## - Watch Video Solution

73. Calculate the pH value in 0.001 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$

## - Watch Video Solution

74. How many grams of NaOH must be dissolved in 1 L of the solution to give it a pH value of 12 ?

## (D) Watch Video Solution

75. Classify the following into Lewis acids and Lewis bases
$\mathrm{NH}_{3}, \mathrm{BF}_{3}, \mathrm{Ag}^{+}, \mathrm{SiF}_{4}, \mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{Ni}^{2+}$

## - Watch Video Solution

76. The value of $K_{w}$ in neutral solution is $5.474 \times 10^{-14}$ at $50^{\circ} \mathrm{C}$.

Calculate the pH of the solution at this temperature.

## - Watch Video Solution

77. Calculate the pH of the following solutions

Solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ containing 0.98 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ per litre.

## - Watch Video Solution

78. A solution of NaOH contains 0.04 g of NaOH per litre. Its pH is:

## - Watch Video Solution

79. The dissociation constant of a weak acid HA is $1.2 \times 10^{-10}$ Calculate its pH in a 0.1 M solutions

## - Watch Video Solution

80. 100 mL of $0.003 \mathrm{M} \mathrm{BaCl} l_{2}$ solution is mixed with 200 ml of 0.0006 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Predict whether a precipitate of $\mathrm{BaSO}_{4}$ will be formed or not. $K_{s p}$ for $\mathrm{BaSO}_{4}$ is $1.1 \times 10^{-10}$

## - Watch Video Solution

81. How much $\mathrm{CH}_{3} \mathrm{COONa}$ should be added to 1 litre of 0.01 m $\mathrm{CH}_{3} \mathrm{COOH}$ to make . A buffer of $\mathrm{pH}=4.1$ ?
$\left(K_{a}\right.$ for $\left.\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}\right)$

## - Watch Video Solution

82. What are acid -base indicators and how do they indicate the end point of an acid -base titration?

## - Watch Video Solution

83. Mention the colour changes observed when the following indicators are added to acids-
(i) Alkaline phenolphathalein solution (ii) Methyl orange solution (iii) Neutral litmus solution

## - Watch Video Solution

84. Which indicator is most commonly used for the titration of a strong acid against a strong base?
85. Name of the suitable indicators which could be used in the following titrations :

## $\mathrm{CH}_{3} \mathrm{COOH}$ against NaOH

## - Watch Video Solution

86. Name of the suitable indicators which could be used in the following titrations:

## $\mathrm{CH}_{3} \mathrm{COOH}$ against $\mathrm{NH}_{4} \mathrm{OH}$

## - Watch Video Solution

87. Name of the suitable indicators which could be used in the following titrations :
$\mathrm{H}_{2} \mathrm{SO}_{4}$ against KOH
88. Name of the suitable indicators which could be used in the following titrations :

HCl against $\mathrm{NH}_{4} \mathrm{OH}$

## - Watch Video Solution

89. Explain the action of phenolphthalein as an indicator on the basis of Ostwald's theory.

## - Watch Video Solution

90. Addition of quick lime to water leads to the formation of $\qquad$ .

## - Watch Video Solution

91. What is salt hydrolysis? Explain with an example.
92. Answer the following questions in one word or one sentence:

What is the nature of aqueous solution of ammonium chloride, acidic or basic?

## - Watch Video Solution

93. why are the aqueous solutions of ammonium acetate and sodium chloride neutral in nature ? Explain in detail and mention the difference in the hydrolysis of the two.

## - Watch Video Solution

94. Predict the nature of the aqueous solutions of the following salts.
95. Predict the nature of the aqueous solutions of the following salts.

## NaCN

## - Watch Video Solution

96. Predict the nature of the aqueous solutions of the following salts. $\mathrm{CH}_{3} \mathrm{COOK}$

## - Watch Video Solution

97. Predict the nature of the aqueous solutions of the following salts.
$\mathrm{Na}_{2} \mathrm{SO}_{4}$

## - Watch Video Solution

98. Which of the following salts do not undergo hydrolysis when dissolved in water ?

Ammonium chloride

Sodium Sulphate

## ( Watch Video Solution

99. Which of the following salts do not undergo hydrolysis when dissolved in water?

KCl

## - Watch Video Solution

100. Which of the following salts do not undergo hydrolysis when dissolved in water?

NaCl

K2CO3
101. Which of the following salts do not undergo hydrolysis when dissolved in water ?
A. A. Sodium chloride
B. B. Ammonium chloride
C. C. Sodium acetate
D. D. All of these

## Answer:

## - Watch Video Solution

102. Calculate the hydrolysis constant. Degree of hydrolysis and pH of 0.5

M solution of $\mathrm{NH}_{4} \mathrm{Cl}$.
( Given : $K_{a}=1.78 \times 10^{-5}, K_{b}=1.8 \times 10^{-5}$ and $K_{w}=1.8 \times 10^{-14}$ )

## - Watch Video Solution

103. Calculate the pH of a solution of ammonium acetate
(Given : $K_{a}=1.78 \times 10^{-5}, K_{b}=1.8 \times 10^{-5}$ and $K_{w}=1.8 \times 10^{-14}$ )

## - Watch Video Solution

104. What is the percentage hydrolysis of $\mathrm{CH}_{3} \mathrm{COONa}$ in 0.01 M Solution ? $\left(K_{a}=1.78 \times 10^{-5}\right.$ and $\left.K_{w}=1.0 \times 10^{-14}\right)$

## - Watch Video Solution

105. The pH of a solution of $\mathrm{NH}_{4} \mathrm{Cl}$ is 4.86 .Calculate the molar concentration fo the solution if
$K_{b}=1.0 \times 10^{-5}$ and $K_{w}=1.0 \times 10^{-14}$

## - Watch Video Solution

1. What do you understand by the term echo?

## - Watch Video Solution

2. Why is equilibrium said to by dynamic ?

## - Watch Video Solution

3. Can liquid $\Leftrightarrow$ gas equilibrium be attained in an open vessel ? If not why?

## - Watch Video Solution

4. What is the effect on the pressure of a gas if its temperature is increased at constant volume ?
5. A gas is in equilibrium with water at a certain temperature and pressure what will happen if

## Pressure of the gas is increased ?

## - Watch Video Solution

6. Give two examples each of the irreversible and reversible reactions.

## - Watch Video Solution

7. Can a catalyst affect the state of chemical equilibrium ?

## - Watch Video Solution

8. What is the relationship between $K_{p}$ and $K_{c}$ ?

## - Watch Video Solution

9. sort out the homogeneous and netrogeneous equilibrium from the following

$$
\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{Cao}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

## - Watch Video Solution

10. sort out the homogeneous and netrogeneous equilibrium from the following
$\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)$

## - Watch Video Solution

11. Write the equilibrium constant expression for the following reactions :
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

## - Watch Video Solution

12. Write the equilibrium constant expression for the following reactions :
$\mathrm{BaSO}_{4}(s) \Leftrightarrow \mathrm{Ba}^{2+}(a q)+\mathrm{SO}_{4}^{2-}(a q)$

## Watch Video Solution

13. Write the equilibrium constant expression for the following reactions :
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}(a q)$

## - Watch Video Solution

14. State the units of $K_{p}$ and $K_{c}$ for the reaction.

$$
2 N O(g)+O_{2}(g) \Leftrightarrow 2 N O_{2}(g)
$$

## - Watch Video Solution

15. If the value of $K$ for the reaction,

$$
H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H l(g) .
$$

is 48 , what would be the value of $K$ for the reaction.
$\frac{1}{2} H_{2}(g)+\frac{1}{2}(g) \Leftrightarrow H l(g)$ ?

## - Watch Video Solution

16. The value of equilibrium constant for the reactions
$C u^{2+}(a q)+z n(s) \Leftrightarrow C u(s)+Z n^{2+}(a q)$
is $5.0 \times 10^{8}$ in Which direction the reaction is expected to proceed to a greater extent?

## - Watch Video Solution

17. What is the effect of increasing pressure on the equilibrium
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3} ?$

## - Watch Video Solution

18. What will happen if an inert gas is added at constant volume to the system
$2 H l(g) \Leftrightarrow(g)+I_{2}(g) ?$

## - Watch Video Solution

19. Write the conditions to maximise the yield of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by Contact proces.

## - Watch Video Solution

20. What do you understand by ionic equilibrium ?

## - Watch Video Solution

21. The value of equilibrium constant for the reactions
$C u^{2+}(a q)+z n(s) \Leftrightarrow C u(s)+Z n^{2+}(a q)$
is $5.0 \times 10^{8}$ in Which direction the reaction is expected to proceed to a greater extent?

## - Watch Video Solution

22. Define degree of ionisations.

## - Watch Video Solution

23. Why does the solution of a weak electrolyte not conduct much current?

## - Watch Video Solution

24. Why does the solution of an electrolyte conduct eletricity but that an non - electrolyte does not?
25. State Ostwald's dilution law.

## - Watch Video Solution

26. In Bronsted an Lowry concept, water is regarded as an amphoteric substance . Give examples to justify this statement.

## - Watch Video Solution

27. Calculate the pH value of 0.001 M HCl if HCI Is completely ionised

## - Watch Video Solution

28. Why is $\mathrm{H}_{2} \mathrm{O}$ regarded a Lewis base?

## - Watch Video Solution

29. At a certain temperature the hydronium ion concentration in pure water is found to be $1.7 \times 10^{-7} \mathrm{~mol} L^{-1}$. What is the value of $K_{w}$ at this temperature ?

## - Watch Video Solution

30. Which solution does possess a higher $\mathrm{pH}=0.1 \mathrm{M} \mathrm{HCl}$ or 0.01 M NaOH ?

## - Watch Video Solution

31. Which of the following is not a buffer ?

$$
\mathrm{HCN}+\mathrm{NaCN}, \mathrm{HCl}+\mathrm{NaCl}, \mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}
$$

## - Watch Video Solution

32. Write the expressions of solubility products for the following salts .
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.
33. What is the role of HCl gas in the purifications of common salt?

## - Watch Video Solution

34. Which indicator is most commonly used for the titration of a strong acid against a strong base?

## - Watch Video Solution

35. Menstion the nature of aqueous solutoins of following salts.
$\mathrm{NH}_{4} \mathrm{NO}_{3}$

## - Watch Video Solution

36. Predict the nature of the aqueous solutions of the following salts. $\mathrm{CuSO}_{4}$

## - Watch Video Solution

37. Menstion the nature of aqueous solutoins of following salts.

## $\mathrm{NH}_{4} \mathrm{CN}$

## - Watch Video Solution

38. Menstion the nature of aqueous solutoins of following salts.
$\mathrm{K}_{2} \mathrm{SO}_{4}$.

## - Watch Video Solution

1. How is liquid -vapour equilibrium attained in a closed vessel.

## - Watch Video Solution

2. How is equilibrium attained in a chemical reactions? Why is the chemical equilibrium said to be dynamic ?

## - Watch Video Solution

3. What do you understand by active mass of a substance ? In what units can it be expressed?

## - Watch Video Solution

4. What is concentration quotient ? Write concentration quotients for the the following reactions:

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)
$$

5. What is concentration quotient ? Write concentration quotients for the the following reactions:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$.

## - Watch Video Solution

6. Why is $\mathrm{CO}_{2}$ made to escape in a lime kiln during the preparation of lime from limestone?

## - Watch Video Solution

7. What will be the effect of increasing pressure on the following equilibria?
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
8. Discuss the effect of increase of pressure on the following reactions $\mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$

## Watch Video Solution

9. What will be the effect of increasing pressure on the following equilibria?
$2 H l(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

## - Watch Video Solution

10. From the following data (at 298 K ) prdict which oxide of Nitrogen is most stable
$2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2}(g)+2 \mathrm{O}_{2}(g), K=6.7 \times 10^{16}$
$2 N O(g) \Leftrightarrow N_{2}(g) O_{2}(g), K=2.2 \times 10^{30}$
$2 N_{2} O(g) \Leftrightarrow 2 N_{2}(g)+O_{2}(g), K=3.5 \times 10^{23}$
$2 N_{2} O_{5}(g) \Leftrightarrow 2 N_{2}(g)+5 O_{2}(g), K=1.2 \times 10^{34}$

## Watch Video Solution

11. How does the hamoglobin present In our blood transport oxygen to the tissues of the body?

## - Watch Video Solution

12. On the basis of Le- Chatellier's principle ,discuss the condition for obtaining the maximum yield of $\mathrm{SO}_{3}$ in the following reactions:
$2 S O_{2}(g)+O_{2}(g) \Leftrightarrow 2 S O_{3}(g), \Delta H=-42 \mathrm{k}$ cal

## - Watch Video Solution

13. Why is pure water regarded as a weak electrolyte ?

## - Watch Video Solution

14. Bromine water is brown and weakly acidic due to following equilibrium
:

$$
\underset{\text { Brown }}{\mathrm{Br}_{2}(a q)}+2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \underset{\text { Colourless }}{\mathrm{HBrO}(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}(l)+\underset{\text { Colourless }}{\mathrm{Br}^{-}(a q)}
$$

When sodium hydroxide is added to the solution, the solution becomes colourless but the colour return when hydrochloric acid is added. Explain this observation.

## - Watch Video Solution

15. The dissociation of phosgene is represented as follows:

$$
\mathrm{COCl}_{2}(g) \Leftrightarrow C O(g)+C l_{2}(g)
$$

When a mixture of these three gasses at equilibrium is compressed at constant temperature, what happens to the amount of CO in the mixture.

## - Watch Video Solution

16. The dissociation of phosgene is represented as follows:
$\mathrm{COCl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
When a mixture of these three gasses at equilibrium is compressed at constant temperature, what happens to
the partial pressure of $\mathrm{COCl}_{2}$ :

## - Watch Video Solution

17. The dissociation of phosgene is represented as follows:

$$
C O C l_{2}(g) \Leftrightarrow C O(g)+C l_{2}(g)
$$

When a mixture of these three gasses at equilibrium is compressed at constant temperature, what happens to the equilibrium constant for the reactions?

## - Watch Video Solution

18. Apply law of mass action to the dissociation of $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
19. Apply law of mass action to the process,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$.

## - Watch Video Solution

20. State and explain Le- Chateller's principal

## - Watch Video Solution

21. Why is pure water regarded as a weak electrolyte ?

## - Watch Video Solution

22. Bromine water is brown and weakly acidic due to following equilibrium :
$\mathrm{Br}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{HBrO}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(l)+\mathrm{Br}^{-}(a q)$

When sodium hydroxide is added to the solution, the solution becomes colourless but the colour return when hydrochloric acid is added. Explain this observation.

## - Watch Video Solution

23. What do you understand by conjugate pairs of acid and base? Sort out the conjugate pairs in the following reactions.
$\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{3}^{2-}(a q) \Leftrightarrow \mathrm{HCO}_{3}^{-}(a q)+\mathrm{OH}^{-}(a q)$

## - Watch Video Solution

24. What do you understand by conjugate pairs of acid and base? Sort out the conjugate pairs in the following reactions.
$\mathrm{NH}_{4}^{+}(a q)+S^{2-}(a q) \Leftrightarrow H S^{-}(a q)+N H_{3}(a q)$

## - Watch Video Solution

$$
25 .
$$

$\left(\mathrm{K}_{b}\right)$ for $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{NH}_{2},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ are $0.2 \times 10^{-4}, 4$ respectively. Which one is the strongest base and why?

## - Watch Video Solution

26. Sort out the Lewis acids and Lewis bases among the following:
$\mathrm{Cl}^{-}, \mathrm{BCl}_{3}, \mathrm{SO}_{2}, \mathrm{OH}^{-}, \mathrm{Fe}^{3+}, \mathrm{SnCl}_{4}, \mathrm{Ni}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{NH}_{3}$ ?

## - Watch Video Solution

27. Why is pure water neutral although it contains $\mathrm{H}_{3} \mathrm{O}^{+}$ions?

## - Watch Video Solution

28. What do you understand by pH value and pH scale ? Explain.
29. Calculate the pH value of the solution in which the concentration of $O H^{-}$ions is $5.0 \times 10^{-9} \mathrm{~mol} L^{-1} a t 298 K$

## - Watch Video Solution

30. What is meant by common ion effect ?**

## - Watch Video Solution

31. Why does the pH of an acidic buffer remian constant even when a few drops of a strong acid are added to it?

## - Watch Video Solution

32. In qualitative analysis. Explain why

The cations of group II are precipitated, in acidic medium while those of
group IV in alkaline medium.

## - Watch Video Solution

33. In salt analysis. Explain why
$\mathrm{NH}_{4} \mathrm{Cl}$ is added before the addition of $\mathrm{NH}_{4} \mathrm{OH}$ in group III.

## - Watch Video Solution

34. Can NaOH be used in place of $\mathrm{NH}_{4} \mathrm{OH}$ to precipitate the cations of group III in qualitative analysis?

## - Watch Video Solution

35. What is the condition for a salt to get precipitated from its saturated solutions?
36. An acidic solution contains both $\mathrm{Zn}^{2+}$ and $\mathrm{Hg}^{2+}$ ions. Which ion will get precipitated passing $\mathrm{H}_{2} \mathrm{~S}$ into it ?

## - Watch Video Solution

37. What is the principle of selective precipitations ?

## - Watch Video Solution

38. The ionic product of water is $0.11 \times 10^{-14}$ at 273 K . $1.0 \times 10^{-14} a t 298 K$ and $5.1 \times 10^{-14} a t 373 K$ Deduce from this data whether the ionisation of water to hydrogen and hydrooxide ions is exothermic or endothermic.

## - Watch Video Solution

39. Comment on the statement : All Bronsted bases are also Lewis bases but all Bronsted acids are not Lewis acids.

## - Watch Video Solution

40. Why does phenolphthalein assume pink colour in alkaline solutions?

## - Watch Video Solution

41. Explain the action of methyl orange on the basis of quinonoid theory.

## - Watch Video Solution

42. Why is an aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ acidic ?

## - Watch Video Solution

43. Why is the aqueous solution of ammonium acetate neutral ?

## - Watch Video Solution

44. Why do the salts of strong acids and strong bases not undergo hydrolysis?

## - Watch Video Solution

## Essay Long Answer Type Questions

1. What do you understand by chemical equilibrium and how is it attained in a chemical reaction ? What are the characteristics of chemical equilibrium?
2. What is law of mass action \& how is it helpful in finding the equilibrium constant ? Illustrate your answer with atleast two examples.

## Watch Video Solution

3. Define equilibrium constant. What are its main characteristics? How is it related to the concentration quotient of the reaction?

## - Watch Video Solution

4. State and explain Le Chatelier's principle. Explain the effect of change in concentration, pressure and temperature on the following reactions.
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H=-92.4 k J$

## - Watch Video Solution

5. State and explain Le Chatelier's principle. Explain the effect of change in concentration, pressure and temperature on the following reactions.

$$
N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), \Delta H=180.7 k J
$$

## - Watch Video Solution

6. What do you understand by $K_{p}$ and $K_{c}$ ? Derive a relationship between the two.

## - Watch Video Solution

7. Find out the units of $K_{c}$ and $K_{p}$ for the following equilibrium reactions:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

## - Watch Video Solution

8. What is Arrhenius concept of acids and bases ? On the basis of this concept explain why heat of neutralisation for a strong acid and a strong base is always constant.

## - Watch Video Solution

9. Concept of Acids and Bases

## - Watch Video Solution

10. Define a Lewis acid and a Lewis base. What type of species can act as Lewis acids and Lewis bases?

## - Watch Video Solution

11. What do you understand by pH value and pH scale ? Explain.
12. What are buffer solutions and how are they prepared? Explain the buffer action of an acidic buffer solution. Derive Henderson's equation for an acidic buffer.

## - Watch Video Solution

13. Define solubility product.

## - Watch Video Solution

14. What are acid-base indicators and how do they work? Explain with an example.

## - Watch Video Solution

15. Discuss the various types of acid-base titrations using indicators.
16. Discuss the important theories of acid-base indicators.

## - Watch Video Solution

17. What do you understand by salt hydrolysis? Discuss the hydrolysis of different types of salts.

## - Watch Video Solution

## Objective Multiple Choice Type Questions

1. In aa chemical reaction equilibrium is established when :
A. operating reaction ceases
B. concentrations of reactants and products are equal
C. velocities of opposing reactions become equal
D. temperatures of opposing reactions are equal.

## Answer: C

## - Watch Video Solution

2. The equilibrium constant of a reversible reaction at a given temperature
A. depends on initial concentration of reactants
B. depends on the concentration of products at equilibrium
C. does not depend on the initial concentration
D. is not a characteristic of the reaction.

## Answer: C

## - Watch Video Solution

3. In the reaction,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
the value of the equilibrium constant depends on
A. volume of the reaction vessel
B. total pressure of the system
C. the initial concentration of nitrogen and hydrogen
D. the temperature

## Answer: D

## - Watch Video Solution

4. In the reaction $A+B \Leftrightarrow C+D, 4$ moles of A
react with 4 moles of $B$ and form 2 moles each of $C$ and $D$. The value of $K e$ for the reaction is
A. 2
B. 3
C. 1
D. 1.56

## Answer: C

## - Watch Video Solution

5. For a reversible reaction, if the concentration of the reactants are doubled, then the equilibrium constant will
A. also be doubled
B. be halved
C. become one fourth
D. remain the same.

## Answer: D

6. For the reaction
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$
the units of $K$ are
A. $\mathrm{L} \mathrm{mol}^{-1}$
B. $\mathrm{mol} L^{-1}$
C. $\left(\operatorname{mol} L^{-1}\right)^{2}$
D. ( $\mathrm{L} \mathrm{mol}^{-1}$.
(2)

## Answer: A

7. The law of mass action was enunciated by

A. Berthelot

B. Bodenstein
C. Graham
D. Guldberg and Waage.

## Answer: D

## - Watch Video Solution

8. For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$, the equilibrium constant changes with:
A. total pressure
B. catalyst
C. the amount of H 2 and la present
D. temperature

## Answer: D

## D Watch Video Solution

9. For the reaction,
$C O(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow \mathrm{CO}_{2}(g)$,
$K_{p} / K_{c}$ is equal to
A. 1
B. $R T^{1 / 2}$
C. $(R T)^{-\frac{1}{2}}$
D. RT

## Answer: C

## - Watch Video Solution

10. Wet clothes dry quicker when there is a breeze because
A. clothes swing in the presence of breeze
B. breeze is hot and evaporates water quicker
C. the evaporation process gets expedited due to removal of water vapour by the breeze
D. breeze helps in quicker condensation of water vapour present in wet clothes

## Answer: C

## - Watch Video Solution

11. 1.1 moles of $A$ are mixed with 2.2 moles of $B$ and the mixture is kept in a one litre flask till the equilibrium

$$
A+2 B \Leftrightarrow 2 C+D
$$

is reached. At equilibrium, 0.2 moles of $C$ are formed. The equilibrium constant of the reaction is
A. 0.001
B. 0.002
C. 0.0033
D. 0.004

## Answer: A

## - Watch Video Solution

12. The equilibrium constant for the reactions
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
is $4 \times 10^{-4}$ at 2000 K . In the presence of a catalyst. The equilibrium is
attained three times faster. The equilibrium constant in the presence of the catalyst at 2000 K is
A. $40 \times 10^{-4}$
B. $4 \times 10^{-4}$
C. $1.2 \times 10^{-3}$
D. difficult to compute without more data.

## Answer: B

13. Consider the following two gaseous equilibria involving $\mathrm{SO}_{2}$ and the corresponding equilibrium constants at 298 K :
$\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g}), \mathrm{K} 1$
$2 \mathrm{SO}_{3}(g) \Leftrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}$
The values of equilibrium constants are related by
A. $K_{2}=K_{1}$
B. $K_{2}=K_{1}^{2}$
C. $K_{2}=\frac{1}{K_{1}^{2}}$
D. $K_{2}=\frac{1}{K_{1}}$

## Answer: C

## - Watch Video Solution

14. In which of the following case, does the reaction go farthest to completion?
A. $K=10^{2}$
B. $K=10^{-2}$
C. $K=10$
D. $K=1$

## Answer: A

## - Watch Video Solution

15. A mixture of 0.3 moles of $H_{2}$ and 0.3 moles of $l_{2}$ is allowed to react in a 10 litre evacuated flask at $500^{\circ} \mathrm{C}$. The reaction is ${ }^{\prime} \mathrm{H}_{-} 2+I_{-} 2=2 \mathrm{HI}$, the K is found to be 64. The amount of unreacted ' $\_2$ ' equilibrium is
A. 0.15 mole
B. 0.06 mole
C. 0.03 mole
D. 0.2 mole

## - Watch Video Solution

16. 28 g of $N_{2}$ and 6 g of $H_{2}$ were kept at $400^{\circ} \mathrm{C}$ in 1 litre vessel, the equilibrium mixture contained 27.54 g of $\mathrm{NH}_{3}$ The approximate value of $K_{c}$ for the adove reaction can be (in $\mathrm{mol}^{-2} L^{-2}$ )
A. 75
B. 50
C. 25
D. 100

## Answer: A

17. In the reactions
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HCl}(\mathrm{g})$.
A. $K p=K_{c}$
B. $K_{p} \neq K_{c}$
C. $K_{p}>K_{c}$
D. $K_{p}<K_{c}$

## Answer: A

## - Watch Video Solution

18. In the reaction
$A_{2}(g)+4 B_{2}(g) \Leftrightarrow 2 A B_{4}(g), \Delta H<0$
The formation of $A B_{4}(\mathrm{~g})$ will be favoured at
A. low temperature and high pressure
B. high temperature and low pressure
C. low temperature and low pressure
D. high temperature and high pressure.

## Answer: A

## D Watch Video Solution

19. For the reaction $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$, the forward reaction at constant temperature is favoured by
A. introducing an inert gas at constant volume
B. introducing $C l_{2}$ gas at equilibrium
C. introducing an inert gas at constant pressure
D. decreasing the volume of the container.

## Answer: C

## - Watch Video Solution

20. Given $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}, \mathrm{K}_{a}$

$$
F^{-}+H_{2} O \Leftrightarrow H F+O H^{-}, K_{b}
$$

Which of the following relations is correct?
A. $K_{b}=K_{w}$
B. $K_{b}=\frac{1}{K_{w}}$
C. $K_{a} \times K_{b}=K_{w}$
D. $K_{a} / K_{b}=K_{w}$

## Answer: C

## - Watch Video Solution

21. The partial pressures of $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CO}$ and $\mathrm{H}_{2}$ in the equilibrium mixture for the reaction
$\mathrm{CO}+2 \mathrm{H}_{2} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}$
at $27^{\circ} \mathrm{C}$ are 2.0, 1.0 and 0.1 atm respectively. The value of $K_{p}$ for the decompositions of $\mathrm{CH}_{3} \mathrm{OH}$ to CO and $\mathrm{H}_{2}$ is
A. $1 \times 10^{2} \mathrm{~atm}$
B. $20 \times 10^{2} \mathrm{~atm}$
C. $50 \mathrm{~atm}^{2}$
D. $5 \times 10^{-3} \mathrm{~atm}^{2}$

## Answer: D

## - Watch Video Solution

22. At constant temperature, the equilibrium constant $\left(K_{P}\right)$ for the decomposition reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$, is expressed by $K_{p}=\frac{\left(4 x^{2} p\right)}{\left(1-x^{2}\right)}$
where $p=$ pressure,$x=$ extent of decomposition which one of the following statements is true?
A. $K_{p}$ increase with increase of p
B. $K_{p}$ increases with increase of x
C. $K_{p}$ increases with decrease of x
D. $K_{p}$ remains constant with change in P and X .

Answer: D

## - Watch Video Solution

23. For the following reaction in gaseous phase,
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \frac{K_{c}}{K_{p}}$ is
A. $(R T)^{1 / 2}$
B. $(R T)^{-1 / 2}$
C. $(R T)$
D. $(R T)^{-1}$

## Answer: A

24. One of the following equilibrium is not affected by change in volume of the falsk:
A. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
C. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
D. $S O_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

## Answer: C

## - Watch Video Solution

25. Consider the reactions equilibrium ,
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}), \Delta H^{\circ}=-198 \mathrm{~kJ}$
On the basis of Le- Chatelier's Principal , the condition favourable for the forward reaction is
A. lowering of temperature as well as pressure
B. increasing temperature as well as pressure
C. lowering the temperature and increasing the pressure
D. any value of temperature and pressure.

## Answer: C

## - Watch Video Solution

26. For the reaction equilibrium,
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at equilibrium are $4.8 \times 10^{-2}$ and $1.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L} L^{-1}$ respectively. The value of $K_{c}$ for the reaction is
A. $3.3 \times 10^{-2} \mathrm{~mol} L^{-1}$
B. $3 \times 10^{-1} \mathrm{~mol} \mathrm{~L} L^{-1}$
C. $3 \times 10^{-3} \mathrm{~mol} \mathrm{~L} L^{-1}$
D. $3 \times 10^{3} \mathrm{~mol} L^{-1}$

## D Watch Video Solution

27. The equilibrium constant for the following reaction will be

$$
P_{4(s)}+5 O_{2(g)} \Leftrightarrow P_{4} O_{10(s)}
$$

A. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{\left[P_{4}\right]\left[O_{2}\right]^{5}}$
B. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{5\left[P_{4}\right]\left[O_{2}\right]}$
C. $K_{c}=\left[O_{2}\right]^{5}$
D. $K_{c}=\frac{1}{\left[O_{2}\right]^{5}}$

## Answer: D

## - Watch Video Solution

28. For the reactions,
$C O(g)+l_{2}(g) \Leftrightarrow \operatorname{COCl}_{2}(g)$, the $\frac{K_{P}}{K_{c}}$ is equal to
A. $\frac{1}{R T}$
B. RT
C. $\sqrt{R T}$
D. 1.0

## Answer: A

## - Watch Video Solution

29. The equilibrium constant for the reacction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ at temperature (T) $4 \times 10^{-4}$ The value of $K_{c}$ for the
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$ atthesametemperature?(1)/(2) $\mathrm{F}_{-}(2)$
(g)hArrF(g)
A. $2.5 \times 10^{-2}$
B. 50
C. $4 \times 10^{-4}$
D. 0.02

## Answer: B

## - Watch Video Solution

30. For the reaction,
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$,
$\left(K_{c}=1.8 \times 10^{-6} a t 184^{\circ} C\right)$
$(R=0.0083 k J) /(\mathrm{mol} \mathrm{K})$
When $K_{p}$ and $K_{c}$ are compared at $184^{\circ} C$ it is found that
A. Whether $K_{p}$ is greater than, less than or equal to $K_{c}$ depends
upon the total gas pressure.
B. $K_{p}=K_{c}$
C. $K_{p}$ is less than $K_{c}$
D. $K_{P}$ is greater than $K_{c}$

## - Watch Video Solution

31. The exothermic formation of $\mathrm{ClF}_{3}$ is represented by the equations.
$C l_{2}(g)+3 F_{2}(g) \Leftrightarrow 2 C l F_{3}(g): \Delta, H=-329 \mathrm{~kJ}$
Which of the following will increase the quantity of $C l F_{3}$ in an equilibrium mixture of $\mathrm{Cl}_{2}, \mathrm{~F}_{2}$ and $\mathrm{ClF}_{3}$ ?
A. Adding $F_{2}$
B. Increasing the volume of the container
C. Removing $\mathrm{Cl}_{2}$
D. Increasing the temperature.

## Answer: A

## - Watch Video Solution

32. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm pressure .

Ammonium hydrogen sulphide decomposses to yield $\mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{~S}$ gases in the flask. When the decomposition reaction reaches equilibrium , the total pressure in the flask rises to 0.84 atm . The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is
A. 0.11
B. 0.17
C. 0.18
D. 0.30

## Answer: A

## - Watch Video Solution

33. Phosphorus pentachloride dissociates as follows in a closed reaction vessel
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
If total pressure at equilibrium of the reaction mixture is $P$ and degree of dissociation of $P C l_{5}$ is x , the partial pressure of $\mathrm{PCl}_{3}$ will be.
A. $\left(\frac{x}{x+1}\right)_{p}$
B. $\left(\frac{2 x}{1-x}\right) p$
C. $\left(\frac{x}{x-1}\right) \mathrm{p}$
D. $\left(\frac{x}{1-x}\right) p$

## Answer: A

## - Watch Video Solution

34. The equilibrium constant for the reation,
$\mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
is $K_{c}=4.9 \times 10^{-2}$ The value of $K_{c}$ for the reaction
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$,
will be
A. 416
B. $2.4 \times 10^{-3}$
C. $9.8 \times 10^{-2}$
D. $4.9 \times 10^{-2}$

## Answer: A

## - Watch Video Solution

35. For the following three reactions (i),(ii) and (iii) equlibrium constant are given.
(i) $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g), K_{1}$
(ii) $\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}(g)+3 \mathrm{H}_{2}(g), K_{2}$
(iii) $\mathrm{CH}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2}(g), K_{3}$

Which of the following relations is correct ?
A. $K_{1} \sqrt{K_{2}}=K_{3}$
B. $K_{2} K_{3}=K_{1}$
C. $K_{3}=K_{1} K_{2}$
D. $K_{3} . K_{2}^{3}=K_{1}^{2}$

## Answer: C

## - Watch Video Solution

36. The value of $\Delta H$ for the reaction
$X_{2}(g)+4 Y_{2} \Leftrightarrow 2 X Y_{4}(g)$ is less than zero.
Formation of $X Y_{4}(g)$ will be favoured at
A. low pressure and low temperature
B. high temperature and low pressure
C. high pressure and low temperature
D. high temperature and high pressure.

## Answer: C

## - Watch Video Solution

37. For the reaction $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$, the equilibrium constant is K 1 and for reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$.
equilibrium constant is K2 What is $K$ for the reaction $N O_{2}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+O_{2}(g)$
A. $1 / 4\left(4 K_{1} K_{2}\right)$
B. $\left(1 / K_{1} K_{2}\right)^{1 / 2}$
C. $1 /\left(K_{1} K_{2}\right)$
D. $1 /\left(2 K_{1} K_{2}\right)$

## Answer: B

## - Watch Video Solution

38. For the reversible reaction

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\text { Heat }
$$

The equilibrium shifts in forward directions.
A. by increasing the concentration of $\mathrm{NH}_{3}(\mathrm{~g})$
B. by decreasing the pressure
C. by decreasing the concentration of $N_{2}(g)$ and $H_{2}(g)$
D. by increasing pressure and decreasing temperature

## Answer: D

## - Watch Video Solution

39. For a given exothermic reaction,$K_{P}$ and $K_{p}{ }^{\prime}$ are the equilibrium constant at temperature $T_{1}$ and $T_{2}$ respectively .Assuming that heat of reaction is constant in temperature range between $T_{1}$ and $T_{2}$, it is readly observed that
A. $K_{p}>K_{p}$
B. $K_{p}<K_{p}$
C. $K_{p}=K_{p}$
D. $K_{p}=\frac{1}{K_{p}{ }^{\prime}}$

## Answer: A

40. For the reaction, $S O_{2(g)}+\frac{1}{2} O_{2(g)} \Leftrightarrow S O_{3(g)}$, If $K_{P}=K_{C}(R T)^{x}$ where the symbol have usual meaning then the value ofx is: (assuming ideality).
A. -1
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. 1

## Answer: B

## - Watch Video Solution

41. Given $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}: \mathrm{K}_{a}$

$$
F^{-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow H F+O H^{-}, K_{b}
$$

Which of the following relations is correct ?
A. $K_{b}=K_{w}$
B. $K_{a}=\frac{1}{K_{w}}$
C. $K_{a} \times K_{b}=K_{w}$
D. $K_{a} / K_{b}=K_{w}$

## Answer: C

## - Watch Video Solution

42. At $80^{\circ} \mathrm{C}$, pure distilled water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-6} \mathrm{~mol} \mathrm{~L} L^{-1}$ The value of $K_{w}$ at this temperature will be
A. $1 \times 10^{-6}$
B. $1 \times 10^{-12}$
C. $1 \times 10^{-14}$
D. $1 \times 10^{-5}$

## Answer: B

43. $p K_{a}$ value of the strongest acid among the following is
A. 3.0
B. 4.5
C. 1.0
D. 2.0

## Answer: C

44. 0.2 molar solution of formic acid is ionised to an extent of $3.2 \%$ its ionisation constant is
A. $9.6 \times 10^{-3}$
B. $2.1 \times 10^{-4}$
C. $1.25 \times 10^{-6}$
D. $4.8 \times 10^{-5}$

## Answer: B

## - Watch Video Solution

45. Which one of the following has the highest pH ?
A. Distilled water
B. $1 \mathrm{M} \mathrm{NH}_{3}$
C. 1 M NaOH
D. Water saturated with chlorine

## Answer: C

## - Watch Video Solution

46. An aqueous solution whose $\mathrm{pH}=0$ is
A. acidic
B. neutral
C. basic
D. amphoteric

## Answer: A

## - Watch Video Solution

47. The pH of a $10^{-8}$ molar solution of HCl in water is
A. 8
B. -8
C. between7 and 8
D. between 6 and 7 .

## Answer: D

48. The pH of 0.005 molar aqueous solution of sulphuric acid is approximately
A. 0.005
B. 2
C. 1
D. 0.01

## Answer: B

## - Watch Video Solution

49.40 mg of pure NaOH is dissolved in 10 litres of distilled water. The pH of the solution is
A. 9
B. 10
C. 11
D. 12

## Answer: B

## - Watch Video Solution

50. The solubility product of AgCl is $1.8 \times 10^{-10}$. Precipitation of AgCl will occur by mixing which of the following solutions are mixed in equal volumes?
A. $10^{-4} M C a^{2+}+10^{-4} M F^{-}$
B. $10^{-2} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{-}$
C. $10^{-5} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{-}$
D. $10^{-3} \mathrm{MCa}^{2+}+10^{-5} \mathrm{MF}^{-}$

## Answer: B

51. The solubility product of a sulphide MS is $3 \times 10^{-25}$ and that of another sulphide NS is $4 \times 10^{-40} \mathrm{In}$ ammonical solution
A. only NS gets precipitated
B. only MS gets precipitated
C. neither sulphide precipitates out
D. both sulphides precipitate out.

## Answer: D

## - Watch Video Solution

52. Concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ in buffer solution are in the ratio of $1: 1, K_{b}$ for $\mathrm{NH}_{4} \mathrm{OH}$ is $10^{-10}$ The pH of the buffer is
A. 4
B. 5
C. 9
D. 11

## Answer: A

## - Watch Video Solution

53. The solubility product of silver chloride is $1.44 \times 10^{-4}$ at 373 K . The solubility of silver chloride in boiling water will be
A. ${ }^{\circ} .72 x x 10 \wedge(-4) M \sim$
B. $1.20 \times 10^{-2} \mathrm{M}$
C. $0.72 \times 10^{-2} \mathrm{M}$
D. $1.20 \times 10^{-4} \mathrm{M}$

## Answer: B

## - Watch Video Solution

54. Which equilibrium can be described as an acid base reaction using the Lewis acid-base definition but not using the Bronsted-Lowery definition?
A. $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \Leftrightarrow 2 \mathrm{NH}_{4}^{+}+\mathrm{SO}_{4}^{2-}$
B. $\mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
C. $\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+} \mathrm{CH}_{3} \mathrm{COO}^{-}$
D. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}+4 \mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}\right.$

## Answer: D

## - Watch Video Solution

55. The conjugate acid of $\mathrm{HPO}_{4}^{2-}$ is:
A. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
B. $\mathrm{PO}_{4}^{3-}$
C. $H_{3} P O_{4}$
D. $\mathrm{H}_{3} \mathrm{PO}_{3}$.

## - Watch Video Solution

56. Which of the following is not Lewis acid ?
A. $B F_{3}$
B. $F e C l_{3}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $P F_{5}$.

## Answer: C

## - Watch Video Solution

57. Which of the following statement is (are) not correct ?
A. Every indicator changes its colour in a definte pH range
B. The pH range of litmus is $5.0-8.0$
C. The quinonoid form of an indicator is usually colourless or of light colour
D. Undissociated methyl orange molecule is yellow.

## Answer: C

## - Watch Video Solution

58. The best indicator for the detection of end point in titration of a weak acid and a strong base is :
A. Phenolphthalein
B. litmus
C. methyl orange
D. thymol. Blue
59. The blue litmus is turned red by an aqueous solution of
A. $\mathrm{KNO}_{3}$
B. NaCl
C. $\mathrm{CuSO}_{4}$
D. $\mathrm{CH}_{3} \mathrm{COONa}$.

## Answer: C

## - Watch Video Solution

60. The aqueous solution (s) of which of the following salts is (are) acidic in nature?
A. $\mathrm{CuSO}_{4}$
B. KCl
C. $\mathrm{CH}_{3} \mathrm{COOK}$
D. $\mathrm{NH}_{4} \mathrm{NO}_{3}$.

## Answer: A::D

## - Watch Video Solution

61. The aqueous solution of $\mathrm{CH}_{3} \mathrm{COONa}$ is alkaline due to interaction of the following with water.
A. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
B. $\mathrm{Na}^{+}$
C. $\mathrm{CH}_{3} \mathrm{COONa}$ as a whole
D. NaOH

## Answer: A

62. The aqueous solution of $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ is neutral because
A. $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions are unable to interact with water
B. $\mathrm{NH}_{4}^{+}$ions are unable to interact with water.
C. both $\mathrm{NH}_{4}^{+}$and $\mathrm{CH}_{3} \mathrm{COO}^{-}$are unable to interact with water
D. both $\mathrm{NH}_{4}^{+}$and $\mathrm{CH}_{3} \mathrm{COO}^{-}$are able to interact heavily with water.

## Answer: D

## - Watch Video Solution

63. Hydrolysis is the reverse process of
A. decomposition
B. dehydration
C. neutralisation
D. dissociation.

## Answer: C

## - Watch Video Solution

64. The aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is neutral because
A. both $\mathrm{Na}^{+}$and $\mathrm{SO}_{4}^{2-}$ ions interact heavily with water
B. Both $\mathrm{Na}^{+}$and $\mathrm{SO}_{4}^{2-}$ ions interact moderately with water
C. both $\mathrm{Na}^{+}$and $\mathrm{SO}_{4}^{2-}$ ions do not interact at all with water
D. $\mathrm{Na}^{+}$is a strong acid and $\mathrm{SO}_{4}^{2-}$ is a strong base.

## Answer: C

## - Watch Video Solution

65. The aqueous solution of $\mathrm{FeCl}_{3}$ is
A. acidic
B. alkaline
C. neutral
D. either acidic or basic depending upon concentration.

## Answer: A

## - Watch Video Solution

66. If a solution has of a pOH value of 14 at $25^{\circ} \mathrm{C}, \mathrm{H}^{+}$ion concentration in $\mathrm{mol} L^{-1}$ should be
A. 0
B. 1
C. 10
D. 14

## Answer: B

67. The solubility of $A_{2} X_{3}$ is $y \mathrm{~mol} d m^{-3}$ Its solubility product is
A. $6 y^{4}$
B. $64 y^{4}$
C. $36 y^{5}$
D. $108 y^{5}$

## Answer: D

Watch Video Solution
68. If $p K_{b}$ for fluoride ion at $25^{\circ} \mathrm{C}$ is 10.83 the ionisation constant of hydrofluoric acid in water at this temperature is
A. $1.74 \times 10^{-5}$
B. $3.52 \times 10^{-3}$
C. $6.75 \times 10^{-4}$
D. $5.38 \times 10^{-2}$

## Answer: C

## - Watch Video Solution

69. Which of the following statement is correct?
A. The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl is 8
B. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is $\mathrm{H}_{3} \mathrm{PO}_{4}$
C. Autoprotolysis constant of water increases with temperature
D. When a solution of a weak monoprotic acid is titrated against a strong base, at half neutratlisation point, $\mathrm{pH}=1 / 2 p K_{a}$

## Answer: C

70. The pH of 0.1 M solution of the following salts increases in the order.
A. $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}>\mathrm{NaCN}>\mathrm{HCl}$
B. $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
C. $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
D. $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$.

## Answer: B

## - Watch Video Solution

71. A buffer solution cannot be prepared from a mixture of
A. sodium acetate and acetic acid in water
B. Sodium acetate and hydrochloric acid in water
C. ammonia and ammonium chloride in water
D. ammonia and sodium hydroxide in water.

## Answer: D

## - Watch Video Solution

72. For a sparingly soluble salt $A_{p} B_{q}$, the relationship of its solubility product ( $K_{s}$ ) with its solubility ( S ) is
A. $K_{s}=S^{p+q} \cdot P^{p} \cdot q^{q}$
B. $K_{s}=S^{p+q} \cdot P^{q} \cdot q^{p}$
C. $K_{s}=S^{p q} \cdot p^{p} \cdot q^{q}$
D. $K_{s}=S^{p q},(p q)^{p+q}$

## Answer: A

## - Watch Video Solution

73. One of the following species acts as both Bronsted acid and base
A. $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
B. $\mathrm{HPO}_{3}^{2-}$
C. $H P O_{4}^{2-}$
D. all of these

## Answer: C

## - Watch Video Solution

74. An aqueous solution of 1 M NaCl and 1 M HCl is
A. not a buffer but pH $<7$
B. not a buffer but $\mathrm{pH}>7$
C. a buffer with $\mathrm{pH}<7$
D. a buffer with $p H>7$

## Answer: A

75. pH of 0.005 M calcium acetate $\left(p K_{a}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{COOH}=4.74\right)$ is
A. 7.04
B. 9.37
C. 9.26
D. 8.37

## Answer: D

## - Watch Video Solution

76. The solubility in water of a sparingly soluble salt $A B_{2}$ is
$1.0 \times 10^{-5} \mathrm{~mol} L^{-1}$. Its solubility product number will be
A. $4 \times 10^{-15}$
B. $4 \times 10^{-10}$
C. $1 \times 10^{-15}$
D. $1.0 \times 10^{-10}$

## Answer: A

## - Watch Video Solution

77. Which one of the following statements is not true ?
A. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is $\mathrm{HPO}_{4}^{2-}$
B. $\mathrm{pH}+\mathrm{pOH}=14$ for all aqueous solutions
C. The pH of $1 \times 10^{-8} \mathrm{M} \mathrm{HCl}$ is 8
D. 96,500 coulombs of electricity when passed through a $\mathrm{CuSO}_{4}$ solution deposite 1 g equivalent of copper at the cathode.

Answer: C
78. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is :
A. $\mathrm{PO}_{4}^{3-}$
B. $P_{2} O_{5}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{HPO}_{4}^{2-}$

## Answer: D

## - Watch Video Solution

79. The molar solubility (in mol $L^{-1}$ ) of a sparingly soluble salt $M X_{4}$ is 's' The corresponding solubility product is $K_{s p} . \mathrm{s}$ is given in terms of $K_{s p}$ by the relation.
A. $s=\left(\frac{K_{s p}}{128}\right)^{1 / 4}$
B. $s=\left(128 K_{s p}\right)^{1 / 4}$
C. $s=\left(256 K_{s p}\right)^{1 / 5}$
D. $s=\left(\frac{K_{s p}}{256}\right)^{1 / 5}$

## Answer: D

## - Watch Video Solution

80. The solubility product of a salt having general formula $M X_{2}$ in water $4 \times 10^{-12}$. The concentration of $M^{2+}$ ions in the aqueous solution of the salt is
A. $4.0 \times 10^{-10} M$
B. $1.6 \times 10^{-4} M$
C. $1.0 \times 10^{-4} M$
D. $2.0 \times 10^{-6} M$

## Answer: C

81. Hydrogen ion concentration in $\mathrm{mol} / \mathrm{L}$ in a solution of $\mathrm{pH}=5.4$ will be
A. $3.98 \times 10^{-6}$
B. $3.68 \times 10^{-6}$
C. $3.88 \times 10^{-6}$
D. $3.98 \times 10^{8}$

## Answer: A

## - Watch Video Solution

82. What is the conjugate base of $\mathrm{OH}^{-}$?

## - Watch Video Solution

83. The $p K_{a}$ of a weak acid (HA) is 4.5 The pOH of an aqueous buffered solution of HA in which $50 \%$ of it is ionised is
A. 4.5
B. 2.5
C. 9.5
D. 7.0

## Answer: C

## - Watch Video Solution

84. In a saturated solution of the sparingly soluble strong electrolyte $\mathrm{AgIO}_{3}$ (molecular mass=283), the equilibrium which sets in is $\mathrm{AgIO}_{3}(s) \Leftrightarrow \mathrm{Ag}^{+}(a q)+\mathrm{IO}_{3}^{-}(a q)$ If the solubility product constant $K_{s p}$ of $\mathrm{AgIO}_{3}$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_{3}$ contained in 100 mL of its saturated solution?
A. $28.3 \times 10^{-2} g$
B. $2.83 \times 10^{-3} g$
C. $1.0 \times 10^{-7} g$
D. $1.0 \times 10^{-4} g$.

## Answer: B

## - Watch Video Solution

85. The first and second dissociation constant of an acid $H_{2} A$ are $1.0 \times 10^{-5}$ and $5.0 \times 10^{-10}$ respectively . The overall dissociation constant of the acid will be :
$5.0 \times 10^{-5}$
$5.0 \times 10^{-15}$
$5.0 \times 10^{-15}$
$0.2 \times 10^{5}$
A. $5.0 \times 10^{-5}$
B. $5.0 \times 10^{-15}$
C. $5.0 \times 10^{-15}$
D. $0.2 \times 10^{5}$

## Answer: C

## - Watch Video Solution

86. $p K_{a}$ of a weak acid (HA) and $p K_{b}$ of a weak base (BOH) are 3.2 and 3.4, respectively. The pH of their salt (AB) solution is:-
A. 9.58
B. 4.79
C. 7.01
D. 9.22

## Answer: C

87. What is $\left[H^{+}\right]$in $\mathrm{mol} / \mathrm{L}$ of a solution that is 0.20 M in $\mathrm{CH}_{3} \mathrm{COONa}$ and 0.10 M in $\mathrm{CH}_{3} \mathrm{COOH} ?\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)$
$3.5 \times 10^{-4}$
$1.1 \times 10^{-5}$
$1.8 \times 10^{-5}$
$9.0 \times 10^{-6}$
A. $3.5 \times 10^{-4}$
B. $1.1 \times 10^{-5}$
C. $1.8 \times 10^{-5}$
D. $9.0 \times 10^{-6}$

## Answer: D

## - Watch Video Solution

88. pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 . The value of solubility product $K_{s p}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
(a) $3.3 \times 10^{-7}$
(b) $5.0 \times 10^{-7}$
(c) $4.0 \times 10^{-6}$
(d) $5.0 \times 10^{-6}$
A. $3.3 \times 10^{-7}$
B. $5.0 \times 10^{-7}$
C. $4.0 \times 10^{-6}$
D. $5.0 \times 10^{-6}$

## Answer: B

## - Watch Video Solution

89. Equimolar solution of the following substances were prepared separately. Which one of these will record the highest pH value?
A. $\mathrm{BaCl}_{2}$
B. $\mathrm{AlCl}_{3}$
C. LiCl
D. $\mathrm{BeCl}_{2}$

## Answer: A

## - Watch Video Solution

90. Buffer solution have constant acidity and alkalinity because :
91. these give unionised acid or base on reaction with added acid and bases
92. acids and alkalies in these solution are shielded from attack by other ions
93. they have large excess of $\mathrm{H}^{+}$or $\mathrm{OH}^{-}$ions
94. they have fixed value of pH
A. these give unionised acid or base on reaction with added
B. acids and alkalies in these solution are shielded from attack by
C. they have large excess of $H^{+}$or $O H^{-}$ions
D. they have fixed value of pH

## Answer: A

## - Watch Video Solution

91. Which of the following salts will give highest pH in water
(a) KCl
(b) NaCl
(c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(d)All of these
A. KCl
B. NaCl
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. All of these

## Answer: C

## (D) Watch Video Solution

92. Using the Gibbs energy change $\Delta G^{\circ}=+63.3 k J$, for the following reaction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Ag}+(a q)+\mathrm{CO}_{3}^{2-}(a q)$ the $K_{\mathrm{sp}}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(s)$ in water at $25^{\circ} \mathrm{C}$ is $\left(R=8.314 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}\right)\left\{\right.$ Given : $\left.10^{0.91} \cong 8\right\}$
A. $3.2 \times 10^{-26}$
B. $8.0 \times 10^{-12}$
C. $2.9 \times 10^{-3}$
D. $7.9 \times 10^{-2}$

## Answer: B

## - Watch Video Solution

93. How many litres of water must be added to 1 litre of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2 ?
A. 0.1 L
B. 0.9 L
C. $0.2 L$
D. 9.0 L

## Answer: D

## - Watch Video Solution

94. Concentration of the $\mathrm{Ag}^{+}$ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{~mol} L^{-1}$, Solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is
(a) $2.42 \times 10^{-8}$
(b) $2.66 \times 10^{-12}$
(c) $4.5 \times 10^{-11}$
(d) $5.3 \times 10^{-12}$
A. $2.42 \times 10^{-8}$
B. $2.66 \times 10^{-12}$
C. $4.5 \times 10^{-11}$
D. $5.3 \times 10^{-12}$

## Answer: D

## - Watch Video Solution

95. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the containers is now decreased by moving the movable piston fifted in the container. The maximum volume of the container, when pressure of $\mathrm{CO}_{2}$ attains its maximum value, will be
(Given that: $\left.\mathrm{SrCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{SrO}(s)+\mathrm{CO}_{2}(g), K_{p}=1.6 \mathrm{~atm}\right)$
A. 5 litre
B. 10 litre
C. 4 litre
D. 2 litre

## - Watch Video Solution

96. The equilibrium constant of the following are :

$$
\begin{array}{ll}
N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3} & K_{1} \\
N_{2}+O_{2} \Leftrightarrow 2 N O & K_{2} \\
H_{2}+\frac{1}{2} O_{2} \rightarrow \mathrm{H}_{2} O & K_{3}
\end{array}
$$

The equilibrium constant $(\mathrm{K})$ of the reaction :
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{k}{\Longleftrightarrow} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$, will be
(a) $K_{1} K_{3}^{3} / K_{2}$
(b) $K_{2} K_{3}^{3} / K_{1}$
(c) $K_{2} K_{3} / K_{1}$
(d) $K_{2}^{3} K_{3} / K_{1}$
A. $K_{1} K_{3}^{3} / K_{2}$
B. $K_{2} K_{3}^{3} / K_{1}$
C. $K_{2} K_{3} / K_{1}$
D. $K_{2}^{3} K_{3} / K_{1}$

## Answer: B

## D Watch Video Solution

97. $p K_{a}$ of a weak acid (HA) and $p K_{b}$ of a weak base (BOH) are 3.2 and 3.4, respectively. The pH of their salt (AB) solution is:-
A. 7.2
B. 6.9
C. 7.0
D. 1.0

## Answer: B

## - Watch Video Solution

98. The solubility of $\mathrm{BaSO}_{4}$ in water is $2.42 \times 10^{-3} \mathrm{gL} \mathrm{L}^{-1}$ at 298 K . The value of its solubility product $\left(K_{s p}\right)$ will be (Given molar mass of
$\left.B a S O_{4}=233 g \mathrm{~mol}^{-1}\right)$
A. $1.08 \times 10^{-10} \mathrm{~mol}^{2} L^{-2}$
B. $1.08 \times 10^{-12} \mathrm{~mol}^{2} L^{-2}$
C. $1.08 \times 10^{-14} \mathrm{~mol}^{2} L^{-2}$
D. $1.08 \times 10^{-8} \mathrm{~mol}^{2} L^{-2}$

## Answer: A

## - Watch Video Solution

99. Which one of the following conditions will favour maximum formation of the product in the reaction.
$A_{2}(g)+B_{2}(g) \Leftrightarrow X_{2}(g), \Delta r H=-X k J ?$
A. low temperature and high pressure
B. Low temperature and low pressure
C. High temperature and high pressure
D. High temperature and low pressure.

## Answer: A

## - Watch Video Solution

100. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
(i) $60 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
(ii) $55 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{M}{10} \mathrm{NaOH}$,
(iii) $75 m L \frac{M}{5} \mathrm{HCl}+25 m L \frac{M}{5} \mathrm{NaOH}$
(iv) $100 m L \frac{M}{10} \mathrm{HCl}+100 \mathrm{~mL} \frac{M}{10} \mathrm{NaOH}$
pH of which one of them will be equal to 1 ?
A. (iv)
B. (i)
C. (ii)
D. (iii)

## D Watch Video Solution

101. An aqueous solution contains $0.10 \mathrm{MH}_{2} S$ and 0.20 M HCl if the equilibrium constants for the formation of $H S^{-}$from $H_{2} S$ is $1.0 \times 10^{-7}$ and that of $S^{2-}$ from $H S^{-}$ ions is $1.2 \times 10^{-13}$ then the concentration of $S^{2-}$ ions in aqueous solution is
$5 \times 10^{-8}$
$3 \times 10^{-20}$
$6 \times 10^{-21}$
$5 \times 10^{-19}$
A. $5 \times 10^{-8}$
B. $3 \times 10^{-20}$
C. $6 \times 10^{-21}$
D. $5 \times 10^{-19}$

## Answer: B

## - Watch Video Solution

102. An aqueous solution contains an unknown concentration $B a^{2+}$. When 50 mL of a 1 M solution $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is added, $\mathrm{BaSO}_{4}$ just begins to precipitate. The final volume is 500 mL .

The solubility product of $B a S O_{4}$ is $1 \times 10^{-10}$.What is the original concentration of $\mathrm{Ba}^{2+}$ ?
A. $5 \times 10^{-9} M$
B. $2 \times 10^{-9} M$
C. $1.1 \times 10^{-9} M$
D. $1.0 \times 10^{-10} \mathrm{M}$

## Answer: C

103. Which of the following are Lewis acids?
A. $\mathrm{PH}_{3}$ and $\mathrm{BCl}_{3}$
B. $\mathrm{AlCl}_{3}$ and $\mathrm{SiCl}_{4}$
C. $\mathrm{PH}_{3}$ and $\mathrm{SiCl}_{4}$
D. $\mathrm{BCl}_{3}$ and $\mathrm{AlCl}_{3}$

## Answer: D

## - Watch Video Solution

104. Which of the following salts is the most basic in aqueous solution?
(a) $A l(C N)_{3}$
(b) $\mathrm{CH}_{3} \mathrm{COOK}$
(c) $\mathrm{FeCl}_{3}$
(d) $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
A. $A l(C N)_{3}$
B. $\mathrm{CH}_{3} \mathrm{COOK}$
C. $\mathrm{FeCl}_{3}$
D. $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$

## Answer: B

## - Watch Video Solution

105. An alkali is titrated against an acid with methyl orange as indicator, which of the following is a correct combination?

|  | Base | Acid | End point |
| :--- | :--- | :---: | :--- |
| A. | Weak | Strong | Colourless to pink |
|  | Wase | Acid | End point |
| B. | Btrong | Strong | Pinkish red to yellow |
|  | Base | Acid | End point |
| C. | Weak Strong Yellow to pinkish red <br>  Base Acid | End point |  |
| D. | Strong | Strong | Pink to colourless |

## Answer: C

106. pH of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 9 . The solubility product $\left(K_{s p}\right)$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is
A. $0.125 \times 10^{-15}$
B. $0.5 \times 10^{-10}$
C. $0.5 \times 10^{-15}$
D. $0.25 \times 10^{-10}$

## Answer: C

## - Watch Video Solution

107. Conjugate base the Bronsted acids $\mathrm{H}_{2} \mathrm{O}$ and HF are :
A. $\mathrm{OH}^{-}$and $\mathrm{F}^{-}$, respectively
B. $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$,respectively
C. $\mathrm{OH}^{-}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$, respectively
D. $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{F}^{-}$, respectively

## Answer: A

## - Watch Video Solution

108. Which will make basic buffer?
a) $100 \mathrm{~mL} \mathrm{of} 0.1 \mathrm{M} \mathrm{HCl}+200 \mathrm{~mL}$ of 0.1 M N H 4 OH
b) 100 mL of $0.1 \mathrm{M} \mathrm{HCl}+100 \mathrm{~mL}$ of 0.1 M NaOH
c) 50 mL of $0.1 \mathrm{M} \mathrm{NaOH}+25 \mathrm{~mL}$ of 0.1 M C H 3 COOH
d) 100 mL of $0.1 \mathrm{M} \mathrm{C} \mathrm{H} 3 \mathrm{COOH}+100 \mathrm{~mL}$ of 0.1 M NaOH .
A. $100 \mathrm{mLof} 0.1 \mathrm{M} \mathrm{HCl}+200 \mathrm{~mL}$ of $0.1 M \mathrm{NH}_{4} \mathrm{OH}$
B. 100 mL of $0.1 \mathrm{M} \mathrm{HCl}+100 \mathrm{~mL}$ of 0.1 M NaOH
C. 50 mL of $0.1 \mathrm{M} \mathrm{NaOH}+25 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
D. 100 mL of 0.1 M CH 3 COOH +100 mL of 0.1 M NaOH .

## Answer: A

109. Solubility of $\mathrm{Cd}(\mathrm{OH})_{2}$ in pure water is $1.84 \times 10^{-5} \mathrm{~mole} / L$ Calculate its solubility in a buffer solution of $p H=12$.
A. $2.49 \times 10^{-10} M$
B. $1.84 \times 10^{-9} M$
C. $6.23 \times 10^{-11} M$.
D. $\frac{2.49}{1.84} \times 10^{-9} M$

## Answer: A

## - Watch Video Solution

110. In which one of the following equilibrium,$K_{p} \neq K_{c}$ ?
A. $2 N O(g) \Leftrightarrow N_{2}(g)+O_{2}(g)$
B. $2 C(s)+O_{2}(g) \Leftrightarrow 2 C O(g)$
C. $2 H l(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
D. $\mathrm{NO}_{2}(g)+\mathrm{SO}_{2}(g) \Leftrightarrow \mathrm{NO}(\mathrm{g})+\mathrm{SO}_{3}(\mathrm{~g})$.

## Answer: B

## - Watch Video Solution

111. In an acid- base titration, 0.1 M HCl solution was added to the NaOH solution of unknown strength. Which of the following corretly shows the change of pH of the titration mixture in this experiment?

(A)

(C)

(B)

(D)
A. (C)
B. (B)
C. (A)
D. (D)

## Answer: C

## - Watch Video Solution

112. If solubility product of $Z r_{3}\left(P O_{4}\right)_{4}$ is denoted by $S$, then which of the following relation between $S$ and $K_{\text {sp }}$ is correct ?
A. $S=\left(\frac{K_{s} p}{216}\right)^{1 / 7}$
B. $S=\left(\frac{K_{s p}}{6912}\right)^{1 / 7}$
C. $S=\left(\frac{K_{s p}}{144}\right)^{1 / 6}$
D. $S=\left(\frac{K_{s p}}{929}\right)^{1 / 9}$

## Answer: B

113. For the solution of the gases $w, x, y$ and $z$ in water at $298 K$ the Henry's law constant $\left(K_{H}\right)$ are $0.5,2,35$ and $40 k^{-}$,respectively. The correct plot for the given data is :


## Answer: B

114. $S(s)+O_{2} \Leftrightarrow S O_{2}(g) \quad K_{1}=10^{52}$
$2 S(s)+3 O_{2} \Leftrightarrow 2 S O_{3}(g) \quad K_{2}=10^{129}$
Calculate $K_{\text {equilibrium }}$ for
A. $10^{154}$
B. $10^{181}$
C. $10^{25}$
D. $10^{77}$

## Answer: C

## - Watch Video Solution

True Or False Type Question

1. In a solid $\Leftrightarrow$ liquid equilibrium, temperature remains constant.
2. Decomposition of $\mathrm{CaCO}_{3}$ is a reversible reaction when carried out in an open kiln.

## - Watch Video Solution

3. At chemical equilibrium, the concentration of all reactants and products are equal

## - Watch Video Solution

4. The equlibrium can be attained from either side of a reversible reactions. Justify.

## - Watch Video Solution

5. For the reaction $A+3 B \rightarrow C+D$ rate of reactions $\propto[A][B]$
6. The compositions of equilibrium mixture is not changed by the catalyst.

## - Watch Video Solution

7. At equilibrium concentration quotient is equal to the equilibrium constant.

## - Watch Video Solution

8. For the equilibrium
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}$, the value of the equilibrium constant decreases on additions of $\mathrm{Cl}_{2}$ gas.

## - Watch Video Solution

9. If equilibrium constant for the reactions.
$A_{2}+B_{2} \Leftrightarrow 2 A B$,
is K , then the backward reactions.
$A B \Leftrightarrow \frac{1}{2} A_{2}+\frac{1}{2} B_{2}$.
its value is $1 / K$. Is it true or false? If false then write the correct constant.

## - Watch Video Solution

10. The rate of an exothermic reactions increases with increase in temperature.

## - Watch Video Solution

11. Give reasons for the following :
$\mathrm{NH}_{3}$ gas a covalent compound does not conduct electricity but its aq.soln. $\mathrm{NH}_{4} \mathrm{OH}$ is a weak electrolyte.
12. The conjugate of a strong acid is always a weak base.

## - Watch Video Solution

13. Comment on the statement : All Arrhenius acids are Bronsted acids but all Arrhenius bases may not be Bronsted bases.

## - Watch Video Solution

14. The ionic product of water is constant at all temperature.True/False.

## - Watch Video Solution

15. A solution of NaOH possesses both $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{OH}^{-}$ions.

## - Watch Video Solution

16. A solution with $\mathrm{pH}=6$ is more acidic than a solution with $\mathrm{pH}=4$

## - Watch Video Solution

17. A solutions containing NaOH and NaCl shows common ion effect.

## - Watch Video Solution

18. The solubility of NaCl in water decreases with increases in temperature.

## - Watch Video Solution

19. What is the principle of selective precipitations?

## - Watch Video Solution

20. A precipitate is formed when ionic product becomes equal to the solubility product.

## - Watch Video Solution

21. An aqueous solution of $\mathrm{KNO}_{3}$ is basic due to hydrolysis

## - Watch Video Solution

22. Methyl orange shows yellow colour in alkaline solutions.

## - Watch Video Solution

## Fill In The Blanks Type Questions

1. At equilibrium,$\Delta G=\ldots \ldots \ldots \ldots \ldots$.
2. $\qquad$ Reactions never go to completion whereas Reactions proceed almost to completion.

## - Watch Video Solution

3. At equilibrium ,the concentrations of all reactants and products become

Watch Video Solution
4. According to the law of mass actions, the rate of a chemical reactions is .............. Proportional to the product of .......... Reactants.
5. The value of equilibrium constant changes on changing the coefficients.

## - Watch Video Solution

6. On increasing pressure, equlibrium will shift in the direction in which number of moles $\qquad$

## - Watch Video Solution

7. When the temperature of a system at equilibrium is increased the equilibrium shifts in the directions in which heat is $\qquad$

## - Watch Video Solution

8. For the reactions,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$,

$$
K_{p}=K_{c}(R T)
$$

## - Watch Video Solution

9. According the Bronsted and Lowry, an acid is a. A base is

## - Watch Video Solution

10. The conjugate acid of $P O_{4}^{3-}$ is $\qquad$

## D Watch Video Solution

11. $C N^{-}$is a Lewis $\qquad$

## - Watch Video Solution

12. At 298 K , the value of $K_{w}$ is
13. In a basic solution $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is .............. than $\left[\mathrm{OH}^{-}\right]$and pH is greater than

## - Watch Video Solution

14. pH is the ............... Logarithm of ........... Concentration

## - Watch Video Solution

15. The suppression of dissociation of a electrolyte on addition of a. Electrolyte containing a. Ion is called common ion effect.

## - Watch Video Solution

16. pH of humen blood is
17. According to Henderson's equation,
$p O H=-\log _{10} \ldots \ldots .+\frac{\log _{10}([\text { Salt }])}{[\ldots \ldots \ldots]}$

## - Watch Video Solution

18. In the group II of qualitative analysis, It is necessary to pass $H_{2} S$ in Medium , otherwise the sulphides of the cations of group ......... will also get precipitated.

## D Watch Video Solution

19. For a binary salt , $K_{s p}=(\ldots \ldots . .)^{2}$

## - Watch Video Solution

20. The quinonoid form of methyl orange is $\qquad$ In colour

## - Watch Video Solution

21. Salt of weak acids and strong bases hydrolysis in water to form solutions.

## - Watch Video Solution

22. An aqueous solution of $\mathrm{NH}_{4} \mathrm{~F}$ is $\qquad$

## - Watch Video Solution

23. Assertion: At equilibrium the concentration of all reactants and products are equal.

Reason : At equilibrium, the rate of forward reactions is equal to the rate of backward reactions.
A. If both Assertion and Reason are CORRECT and a Reason is the CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reason is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: d

## - Watch Video Solution

24. Assertion : Henry's law is not obeyed by ammonia.

Reason : It reacts with water to form ammonium hydroxide.
A. If both Assertion and Reason are CORRECT and a Reason is the CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reason is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: a

## - Watch Video Solution

25. Assertion : The larger the value of equilibrium constant (K). Greater is the extent to which reactants are converted into the products.

Reason : A larger value of $K$ facilitates the forward reactions to proceed to a greater extent before equilibrium is attained.
A. If both Assertion and Reason are CORRECT and a Reason is the CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reaon is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reasson is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: a

## - Watch Video Solution

26. Assertion : The additions of an inert gas at constant volume to a system at equilibrium does not affect the state of equilibrium Reason: The inert gas does not react with any of the reactants or products.
A. If both Assertion and Reason are CORRECT and a Reason is the CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reaon is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reasson is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## - Watch Video Solution

27. Assertion: During the formation of lime in a lime klin. $\mathrm{CO}_{2}(\mathrm{~g})$ formed in the reactions should continuously be removed

Reason: The pressence of $\mathrm{CO}_{2}(\mathrm{~g})$ deteriorates the quality of lime produced.
A. If both Assertion and Reason are CORRECT and a Reason is the CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reaon is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reasson is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: c

28. Assertions: In an exothermic reaction ,a greater yield of products can be obtained by lowering the temperature.

Reason: In an exothermic reactions, the heat constant of reactants is greater than that of the products.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reaon is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reasson is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: b

## - Watch Video Solution

29. Assertions : When HCl gas is passed through a saturated solution of common salt, pure NaCl is precipitated.

Reason: The solubility product of NaCl gets lowered.
A. If both Assertion and Reason are CORRECT and a Reason is the

CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reason is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reason is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: c

## - Watch Video Solution

30. Assertion : Ions like $\mathrm{HCO}_{3}^{-}$,etc. ,act as Bronsted -Lowry acid .

Reason: Such ions are able to funish protons in solutions.
(a)If both Assertion and Reason are CORRECT and a Reason is the CORRECT explanations of the Assertion
(b)If both Assertion and Reason are CORRECT but Reason is not CORRECT explanation of the Assertion.
(c)If Assertion is CORRECT but Reason is INCORRECT.
(d)If Assertion is INCORRECT but Reason is CORRECT.
A. If both Assertion and Reason are CORRECT and a Reason is the CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reaon is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reasson is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: a

## - Watch Video Solution

31. Assertion: $\mathrm{SiF}_{4}$ acts as a Lewis base.

Reason: The central Si atom in $\mathrm{SiF}_{4}$ possesses vacant d- orbitals and can expand its octet by accommodating more electrons in d- orbitals

1. If both Assertion and Reason are CORRECT and a Reason is the CORRECT explanations of the Assertion
2. If both Assertion and Reason are CORRECT but Reaon is not CORRECT explanation of the Assertion.
3. If Assertion is CORRECT but Reasson is INCORRECT.
4. If Assertion is INCORRECT but Reason is CORRECT.
A. If both Assertion and Reason are CORRECT and a Reason is the

CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reaon is not

CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reasson is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## - Watch Video Solution

32. Assertion: The value of ionic product of water $\left(K_{w}\right)$ increases on increasing the temperature.

Reason: The ionisation of water increases with an increase in temperature.
A. If both Assertion and Reason are CORRECT and a Reason is the CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reaon is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reasson is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: a

## - Watch Video Solution

33. Assertion: The pH of a buffer solution does not change appreciably on additions of a small amount of an acid or a base.

Reason: A buffer solution consists of either a weak acid and its salt with a strong base or a weak base its salt with a strong acid.
A. If both Assertion and Reason are CORRECT and a Reason is the CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reaon is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reasson is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: b

## - Watch Video Solution

34. Assertion : The aqueous solution of $\mathrm{CuSO}_{4}$ is acidic in nature.

Reason : Copper sulphate is a salt of a weak base and a strong acid.
A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanations of the Assertion
B. If both Assertion and Reason are CORRECT but Reaon is not CORRECT explanation of the Assertion.
C. If Assertion is CORRECT but Reasson is INCORRECT.
D. If Assertion is INCORRECT but Reason is CORRECT.

## Answer: b

## - Watch Video Solution

## Numerical Problems

1. One mole of $H_{2}$. two moles of $I_{2}$ and three moles of Hl injected in a one litre flask. What will be the concentrations of $H_{2}, I_{2}$ and Hl at equilibrium at $490^{\circ} C$. The equilibrium constant for the reaction at $490^{\circ} C$ is 45.9
2. 1 mole of $N_{2}$ and 3 moles of $\mathrm{PCl}_{5}$ are placed in a 100 litre vessels heated at $227^{\circ} \mathrm{C}$ the equilibrium pressure is 2.05 atm Assuming ideal behaviour,Calculate degree of dissociation of $P C l_{5}$ and $K_{p}$ for the reaction
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$

## - Watch Video Solution

3. An equilibrium mixture at 300 K contains $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at 0.28 and
1.1 atmospheres respectively . If the volume of the container is doubled , calculate the new equilibrium pressures of the gases .

## - Watch Video Solution

4. At 700 K , equilibrium constant for the reaction.
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
is 54.8 . If $0.5 \mathrm{~mol} L^{-1}$ of $\operatorname{Hi}(g)$ is present at equilibrium at 700 K . What are the concentration of $H_{2}(g)$ and $I_{2}(g)$ assuming that we initially started with $H I(g)$ and allowed it to reach equilibrium at $700 K$ ?

## - Watch Video Solution

5. The ester ethyl acetate is formed by the reaction of ethanol and acetic acid and the equilibrium is represented as

$$
\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Write the concentration ratio , $Q$ for this reaction. Note that water is not in excess and is not a solvent in this reactions.

## - Watch Video Solution

6. The ester ethyl acetate is formed by the reaction of ethanol and acetic acid and the equilibrium is represented as

$$
\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)
$$

At 293 K , if one starts with 1,000 mole of acetic acid and 1.80 moles of
ethanol , there are 0.171 moles of ethyl acetate in the final equilibrium mixture , Calculate the equilibrium constant.

## - Watch Video Solution

7. Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as :

$$
\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after sometime
. Has equilibrium been reached?

## - Watch Video Solution

8. The equilibrium constant of the reaction,

$$
A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)
$$

at $100^{\circ} \mathrm{C}$ is 50 . if a one litre flask containing 1 mole of $A_{2}$ is connected to a two litre flask containing two moles of $B_{2}$ how many moles of AB will be formed at 373 K ?

## - View Text Solution

9. A solution contains $0.10 \mathrm{MH}_{2} \mathrm{~S}$ and 0.3 HCl Calculate the concentration of $S^{2-}$ and $\mathrm{HS}^{-}$ions in the solution. For $H_{2} S, K_{a_{1}}=1 \times 10^{-7}$ and $K_{a_{2}}=1.3 \times 10^{-13}$

## - Watch Video Solution

10. Calculate the simultaneous solubility of AgSCN and $\mathrm{AgBr} . K_{\text {sp }}$ for AgSCN and AgBr are $1 \times 10^{-12}$ and $5 \times 10^{-13}$ respectively.

## - Watch Video Solution

11. What volume of 0.10 M sodium formate solution should be added to 50 mL of 0.05 M formic acid to produce a buffer solution of $\mathrm{pH}=4.0$ ? $p K_{a}$ for formic acid $=3.80$ ?
12. The solubility product $K_{s p}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$ is $4.42 \times 10^{-5}$ A 500 mL of saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is mixed with equal volume of 0.4 M NaOH . How much $\mathrm{Ca}(\mathrm{OH})_{2}$ in milligrams is precipitated?

## - Watch Video Solution

13. How many moles of HCl will be required to preapare one litre of a buffer solution (containing NaCN and HCN ) of pH 8.5 using 0.01 gram formula mass of $\mathrm{NaCN} . K_{a}$ for $\mathrm{HCN}=4.1 \times 10^{-10}$ ?

## - Watch Video Solution

## Ncert Text Book Exercise

1. A liquid is in equilibrium with its vapour in a seated container at a fixed temperature. The volume of the container is suddenly increased.
(a) What is the initial effect of the change on vapour pressure?
(b) How do rates of evaporation and condensation change initially?
(c ) What happens when equilibrium is restored finally and what will be the final vapour pressure?

## - Watch Video Solution

2. A liquid is in equilibrium with its vapour in a seated container at a fixed temperature. The volume of the container is suddenly increased.
(a) What is the initial effect of the change on vapour pressure?
(b) How do rates of evaporation and condensation change initially?
(c ) What happens when equilibrium is restored finally and what will be the final vapour pressure?

## - Watch Video Solution

3. A liquid is in equilibrium with its vapour in a seated container at a fixed temperature. The volume of the container is suddenly increased.
(a) What is the initial effect of the change on vapour pressure?
(b) How do rates of evaporation and condensation change initially?
(c) What happens when equilibrium is restored finally and what will be the final vapour pressure?

## - Watch Video Solution

4. What is $K_{c}$ for the following equilibrium when the equilibrium concentration of each substance is : $\left[S O_{1}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M} ?$
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

## - Watch Video Solution

5. At a certain temperature and total pressures of $10^{5} \mathrm{~Pa}$, iodine vapour contains $40 \%$ by volume of 1 atoms
$I_{2}(g) \Leftrightarrow 2 I(g)$
Calculate $K_{p}$ for the equilibrium

## Watch Video Solution

6. Write the expression for the equilibrium constant, $K_{c}$ for each of the following reaction :
(i) $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(s) \Leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
(iii) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5}(a q)$
(iv) $\mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q) \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(g)$
(v) $I_{2}(s)+5 F_{2} \Leftrightarrow 2 I F_{5}$

## - Watch Video Solution

7. Write the expression for the equilibrium constant, $K_{c}$ for each of the following reaction :
(i) $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(s) \Leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
(iii) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5}(a q)$
(iv) $\mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q) \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(g)$
(v) $I_{2}(s)+5 F_{2} \Leftrightarrow 2 I F_{5}$

## - Watch Video Solution

8. Write the expression for the equilibrium constant, $K_{c}$ for each of the following reaction :
(i) $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(s) \Leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
(iii) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5}(a q)$
(iv) $\mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q) \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(g)$
(v) $I_{2}(s)+5 F_{2} \Leftrightarrow 2 I F_{5}$

## - Watch Video Solution

9. Write the expressions for the equilibrium constant $K_{c}$ for each of the following reactions.
$F e^{3+}(a q)+3 O H^{-}(a q) \Leftrightarrow F e(O H)_{3}(s)$

## - Watch Video Solution

10. Write the expressions for the equilibrium constant $K_{c}$ for each of the following reactions.
$I_{2}(s)+5 F_{2} \Leftrightarrow 2 I F_{5}$

## - Watch Video Solution

11. Find out of the value of $K_{c}$ for each of the following equilibrium from the value of $K_{p}$ :
(i) $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g), K_{p}=1.8 \times 10^{-2}$ at 500 K
(ii) $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{p}=167$ at 1073 K

## - Watch Video Solution

12. Find out of the value of $K_{c}$ for each of the following equilibrium from the value of $K_{p}$ :
(i) $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g), K_{p}=1.8 \times 10^{-2}$ at 500 K
(ii) $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{p}=167$ at 1073 K
13. For the following equilibrium $K_{c}=6.3 \times 10^{14}$ at $1000 K$
$N O(g)+O_{2}(g) \Leftrightarrow N O_{2}(g)+O_{2}(g)$
Both the forward the reverse reactions in the equilibrium are elementary bimolecular reactions. What is $K_{c}$, for the reverse reaction?

## Watch Video Solution

14. Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression?

## - Watch Video Solution

15. Reaction between $N_{2}$ and $O_{2-}$ takes place as follows :
$2 \mathrm{~N}_{2}(g)+O_{2}(g) \Leftrightarrow 2 \mathrm{~N}_{2} \mathrm{O}(g)$
If a mixture of $0.482 \mathrm{~mol} N_{2}$ and 0.933 mol of $O_{2}$ is placed in a 10 L
reaction vessel and allowed to form $N_{2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$, determine the composition of equilibrium mixutre.

## - Watch Video Solution

16. Nitric oxide reacts with $B r_{2}$ and gives nitrosul bromide as per reaction given below:
$2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \Leftrightarrow 2 \mathrm{NOBr}(g)$
When 0.087 mol of NO and 0.0437 mol of $\mathrm{Br}_{2}$ are mixed in a closed container at constant temperature 0.0518 mol of NOBr is obtained at equilibrium. Calculate equilibrium amount of NO and $\mathrm{Br}_{2}$.

## - Watch Video Solution

17. At $450 K, K_{p}=2.0 \times 10^{10} /$ bar for the given reaction at equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})$
What is $K_{c}$ at this temperature?
18. A sample of $H I(g)$ is placed in flask at at pressure of 0.2 atm . At equilibrium the partial pressure of $H I(g)$ is 0.04atm what is $K_{p}$ for the given equilibrium ?
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

## - Watch Video Solution

19. A mixture of 1.57 mol of $N_{2}, 1.92 \mathrm{~mol}$ of $\mathrm{H}_{2}$ and 8.13 mol of $\mathrm{NH}_{3}$ is introduced into a 20 L reaction vessel at 500 K . At this temperature, the equilibrium constant, $K_{c}$ for the reaction, $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$ is $1.7 \times 10^{2}$. What is the direction of the net reaction?

## - Watch Video Solution

20. The equilibrium constant expression for a gas reaction is .
$K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$

Write the balanced chemical equation corresponding to this expression.

## - Watch Video Solution

21. 1 mole of $\mathrm{H}_{2} \mathrm{O}$ and 1 mole of CO are taken in a 10 litre vassel and heated to 725 K.At equilibrium 40 per cent of water (by mass ) reacts with carbon monoxide according to the equation
$\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)$
Calculate the equilibrium constant for the reactions.

## ( Watch Video Solution

22. At $700 K$, equilibrium constant for the reaction.

$$
H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)
$$

is 54.8 . If $0.5 \mathrm{~mol} L^{-1}$ of $H i(g)$ is present at equilibrium at $700 K$. What are the concentration of $H_{2}(g)$ and $I_{2}(g)$ assuming that we initially started with $H I(g)$ and allowed it to reach equilibrium at $700 K$ ?
23. What is the equilibirum concentration of each of the substance in the equilibrium when the initial concentration of Icl was $0.78 M$ ?

$$
2 I C l(g) \Leftrightarrow I_{2}(g)+C l_{2}(g), K_{c}=0.14
$$

## - Watch Video Solution

24. $K_{p}=0.04$ atm at 899 K for the equilibrium shown below. What is the equilibrium concentration of $C_{2} H_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium ?
$C_{2} H_{6}(g) \Leftrightarrow C_{2} H_{4}(g)+H_{2}(g)$

## - Watch Video Solution

25. The ester ethyl acetate is formed by the reaction of ethanol and acetic acid and the equilibrium is represented as
$\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)$

Write the concentration ratio, Q for this reaction. Note that water is not in excess and is not a solvent in this reactions.

## - Watch Video Solution

26. Ethyl acetate is formed by the reaction between ethanol and acetic and the equiblibrium is represented as :

$$
\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)
$$

At 293 K , if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol there is 0.171 mol of ethyl acetate in the final equilibrium mixture.

Calculate the equilibrium constant.

## - Watch Video Solution

27. Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:

$$
\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and
maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after sometime
.Has equilibrium been reached?

## - Watch Video Solution

28. A sample of pure $P C l_{5}$ was introduced into aln evacuated vessel at 473 K. After equilibrium was attained, concentration of $\mathrm{PCl}_{5}$ was found to be $0.5 \times 10^{-1} L^{-1}$. If value of $K_{c}$ is $8.3 \times 10^{-3}$. What are the concentration of $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at equilibrium ?
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$

## - Watch Video Solution

29. One of the reaction that takes place in producing steel from iron are is the reduction of iron(II) oxide by carbon monoxide to give iron metal and $\mathrm{CO}_{2}$.
$\mathrm{FeO}(s)+\mathrm{CO}(g) \Leftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), K_{p}=0.265$ atm at 1050 K
What are the equilibrium partial pressures of CO and $\mathrm{CO}_{2}$ and 1050 K if the initial partial pressures are : $p_{C O}=1.4 \mathrm{~atm}$ and $=0.80 \mathrm{~atm}$ ?

## (D) Watch Video Solution

30. Equilibrium constant, $K_{c}$ for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ at 500 K is 0.061
At a particular time, the analysis shows that composition of the reaction mixture is $3.0 \mathrm{~mol} L^{-1} N_{2} .2 .0 \mathrm{~mol} L^{-1} H_{2}$ and $0.5 \mathrm{~mol} L^{-1} N H_{3}$. Is the reaction at equilibrium?

If not in which direction does the reaction tend to proceed to reach equilibrium?

## - Watch Video Solution

31. Bromine monochloride, BrCl decomposition into bromine and chlorine and reaches the equilibrium:
$2 \mathrm{BrCl}(\mathrm{g}) \Leftrightarrow \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
for which $K_{c}=32$ at 500 K . If initially pure BrCl is present at a concentration of $3.3 \times 10^{-3} \mathrm{~mol} L^{-1}$. What is its molar concentration in the mixture at equilibrium ?

## - Watch Video Solution

32. At 1127 K and atm pressure, a gaseous mixture of CO and $\mathrm{CO}_{2}$ in equilibrium with solid carbon has $90.55 \%$ CO by mass,

$$
C_{(s)}+C O_{2(g)} \Leftrightarrow 2 C O_{(g)}
$$

$K_{c}$ for this reaction at the above temperature is

## Watch Video Solution

33. Calculate a) $\Delta G^{\ominus}$ and b) the equilibrium constant for the formation of $\mathrm{NO}_{2}$ from NO and $\mathrm{NO}_{2}$ at 298 K
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})$
Where
$\Delta_{f} G^{\ominus}\left(N O_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{f} G^{\ominus}(N O)=87.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{f} G^{\ominus}\left(O_{2}\right)=0 k J / \mathrm{mol}$
34. Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibrium is subjected to a deecrease in pressure by increasing the volume?
(a) $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
(b) $\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{CaCO}_{3}(s)$
(c) $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$

## - Watch Video Solution

35. Which the following reaction will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.
(i) $\mathrm{COCl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $\mathrm{CH}_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 H_{2} S(g)$
(iii) $\mathrm{CO}_{2}(g)+\mathrm{C}(\mathrm{s}) \Leftrightarrow 2 \mathrm{CO}(g)$
(iv) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
(v) $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(vi) $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

## - Watch Video Solution

36. Which the following reaction will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.
(i) $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
(ii) $\mathrm{CH}_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 H_{2} S(g)$
(iii) $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g)$
(iv) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
(v) $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(vi) $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

## - Watch Video Solution

37. Write the equilibrium constant expression for the following reactions :

$$
C O_{2}(g) \Leftrightarrow C O_{2}(a q)
$$

38. Which the following reaction will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.
(i) $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
(ii) $\mathrm{CH}_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 H_{2} S(g)$
(iii) $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g)$
(iv) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
(v) $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(vi) $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

## - Watch Video Solution

39. Which the following reaction will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.
(i) $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
(ii) $\mathrm{CH}_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 H_{2} S(g)$
(iii) $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g)$
(iv) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
(v) $\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(vi) $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

## - Watch Video Solution

40. Which the following reaction will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.
(i) $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
(ii) $\mathrm{CH}_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 H_{2} S(g)$
(iii) $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g)$
(iv) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
(v) $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(vi) $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

## - Watch Video Solution

41. The equilibrium constant for the following reaction is $1.6 \times 10^{5}$ at $1024 K$
$H_{2}(g)+B r_{2}(g) \Leftrightarrow 2 H B r(g)$
Find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024 K .

## - Watch Video Solution

42. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction :
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
Write an expression for $K_{p}$ for the above reactions

## - Watch Video Solution

43. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction :
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$

How will the values of $K_{p}$ and compositions of equilibrium mixture be affected by
(i) increasing the pressure
(ii) increasing the temperature.
(iii) using a catalyst?

## Watch Video Solution

44. Describe the effect of:
additions of $\mathrm{H}_{2}$

## - Watch Video Solution

45. Describe the effect of :
additions of $\mathrm{CH}_{3} \mathrm{OH}$
46. Describe the effect of :
removal of $C O$

## Watch Video Solution

47. Describe the effect of : removal of $\mathrm{CH}_{3} \mathrm{OH}$

## - Watch Video Solution

48. At $473 K$, equilibrium constant $K_{c}$ for decomposition of phosphorus pentachloride, $P C l_{5}$ is $8.3 \times 10^{-3}$. If decomposition is depicted as, $P C l_{5}(g) \Leftrightarrow P \operatorname{Pl}_{3}(g)+C l_{2}, \Delta_{r} H^{\ominus}=124.0 \mathrm{kJmol}^{-1}$
a) write an expression for $K_{c}$ for the reaction.
b) what is the value of $K_{c}$ for the reverse reaction at the same temperature?
c) what would be the effect on $K_{c}$ if (i) more $P C l_{5}$ is added (ii) pressure is increased (iii) the temperature is increased ?

## - Watch Video Solution

49. At 473K, equilibrium constant, $K_{c}$ for decomposition of phosphorus pentachloride, $P C l_{5}$ is $8.3 \times 10^{-3}$. If decomposition is depicted as :
$P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}, \Delta_{r} H^{\circ}=124.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
what would be the effect on reaction if the temperature is increased ?

## Watch Video Solution

50. At $473 K$, equilibrium constant $K_{c}$ for decomposition of phosphorus pentachloride, $P C l_{5}$ is $8.3 \times 10^{-3}$. If decomposition is depicted as, $P C l_{5}(g) \Leftrightarrow \operatorname{Pcl}_{3}(g)+C l_{2}, \Delta_{r} H^{\ominus}=124.0 k J \mathrm{Jmol}^{-1}$
a) write an expression for $K_{c}$ for the reaction.
b) what is the value of $K_{c}$ for the reverse reaction at the same temperature ?
c) what would be the effect on $K_{c}$ if (i) more $\mathrm{PCl}_{5}$ is added (ii) pressure is increased (iii) the temperature is increased ?
51. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of two stage reaction involves the formation of CO and $\mathrm{H}_{2}$. In second stage, CO formed in first stage is reacted with more steam in water gas shift reaction,

$$
\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

If a reaction wissel at $400^{\circ} \mathrm{C}$ is charged with an equimolar mixture of CO and steam such that $\rho_{\mathrm{CO}}=\rho_{\mathrm{H}_{2} \mathrm{O}} 4.0 \mathrm{bar}$, what will be the partial pressure of $H_{2}$ at equilibrium? $K_{p}=0.1$ at $400^{\circ} \mathrm{C}$.

## - Watch Video Solution

52. Predict which of the following reaction will have appreciable concentration of reactants and products:
a) $C l_{2}(g) \Leftrightarrow 2 C l(g) K_{c}=5 \times 10^{-39}$
b) $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}(g) \Leftrightarrow 2 \mathrm{NOCl}(g), K_{c}=3.7 \times 10^{8}$
c) $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NOCl}_{g}, K_{c}=1.8$

## (D) Watch Video Solution

53. Predict which of the following reaction will have appreciable concentration of reactants and products?

$$
C l_{2}(g)+2 N O(g) \Leftrightarrow 2 N O C l(g), K_{c}=3.7 \times 10^{-8}
$$

## - Watch Video Solution

54. Predict which of the following reaction will have appreciable concentration of reactants and products:
a) $C l_{2}(g) \Leftrightarrow 2 C l(g) K_{c}=5 \times 10^{-39}$
b) $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}(g) \Leftrightarrow 2 \mathrm{NOCl}(\mathrm{g}), K_{c}=3.7 \times 10^{8}$
c) $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NOCl}_{g}, K_{c}=1.8$

## - Watch Video Solution

55. The value of $K_{c}$ for the reaction $3 O_{2}(g) \Leftrightarrow 2 O_{2}(g)$ is $2.0 \times 10^{-50}$ at $25^{\circ} \mathrm{C}$. If the equilibrium concentration of $O_{2}$ in air at $25^{\circ} \mathrm{C}$ is
$1.6 \times 10^{-2}$, what is the concentration of $O_{3}$ ?

## - Watch Video Solution

56. The reaction $\mathrm{CO}_{g}+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
is at equilibrium at 1300 K in a 1 L flask. It also contain 0.30 mol of $\mathrm{CO}, 0.10$ mol of $\mathrm{H}_{2}$ and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of $\mathrm{CH}_{4}$ in the flask. Determine the concentration of $\mathrm{CH}_{4}$ in the mixture. The equilibrium constant, $K_{c}$ for the reaction at the given temperature is 3.90.

## - Watch Video Solution

57. What is meant by the conjugate acid-base pair? Find the conjugate acid/base for the following species:
$\mathrm{HNO}_{2}, \mathrm{CN}^{-}, \mathrm{HCIO}_{4}, \mathrm{~F}^{-}, \mathrm{OH}^{-}, \mathrm{CO}_{3^{2-}}$ and $\mathrm{S}^{2-}$

## - Watch Video Solution

58. Which of the followings are Lewis acids? $\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{+}$and $\mathrm{NH}_{4^{+}}$

## - Watch Video Solution

59. What will be the conjugate bases for the Brönsted acids: $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{HCO}_{3}^{-}$?

## - Watch Video Solution

60. Write the conjugate acids for the following Bronsted bases :
$\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and $\mathrm{HCOO}^{-}$,

## - Watch Video Solution

61. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$and $\mathrm{NH}_{3}$ can act both as $\mathrm{Br} \ddot{o}$ nsted acids and bases. For each case give the corresponding conjugate acid and base.
62. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base: (a) $\mathrm{OH}^{-}$, (b) $\mathrm{F}^{-}$, (c) $\mathrm{H}^{+}$, (d) $B C l_{3}$.

## - Watch Video Solution

63. Classify the following species into Lewis acid and Lewis base. And show how these act as Lewis acid/base :

## - Watch Video Solution

64. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base: (a) $O H^{-}$, (b) $F^{-}$, (c) $H^{+}$, (d) $B C l_{3}$.
65. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base: (a) $O H^{-}$, (b) $F^{-}$, (c) $H^{+}$, (d) $B C l_{3}$.

## - Watch Video Solution

66. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its pH ?

## - Watch Video Solution

67. The pH of a sample of vinegar is 3.76 . Calculate the concentration of hydrogen ion in it.
68. The ionization constant of $\mathrm{HF}, \mathrm{HCOOH}$ and HCN at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and $4.8 \times 10^{-9}$ respectively. Calculate the ionization constants of the corresponding conjugate base.

## - Watch Video Solution

69. The ionization constant of phenol is $1.0 \times 10^{-10}$. What is the concentration of phenolate ion in 0.05 M solution of phenol? What will be its degree of ionization if the solution is also $0.01 M$ in sodium phenolate?

## - Watch Video Solution

70. The first ionization constant of $H_{2} S$ is $9.1 \times 10^{-8}$. Calculate the concentration of $H S^{-}$ion in its $0.1 M$ solution. How will this concentration be affected if the solution is 0.1 M in HCl also ? If the second dissociation constant of $H_{2} S$ is $1.2 \times 10^{-13}$, calculate the concentration of $S^{2-}$ under both conditions.

## - Watch Video Solution

71. The ionization constant of acetic acid is $1.74 \times 10^{-5}$. Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH .

## - Watch Video Solution

72. It has been found that the pH of a 0.01 M solution of an organic acid is
4.15. Calculate the concentration of the anion, the ionization constant of the acid and its $p K_{a}$.

## - Watch Video Solution

73. Assuming complete dissociation, calculate the pH of the following solutions:
$`$ `.0009M nitric acid
74. Assuming complete dissociation, calculate the pH of the following solutions:
(a) 0.003 M HCl , (b) 0.005 M NaOH , (c) 0.002 M HBr , (d) 0.002 M KOH

## - Watch Video Solution

75. Assuming complete dissociation, calculate the pH of the following solutions:
(a) 0.003 M HCl , (b) 0.005 M NaOH , (c) 0.002 M HBr , (d) 0.002 M KOH

## Watch Video Solution

76. Assuming complete dissociation, calculate the pH of the following solutions:
(a) 0.003 M HCl , (b) 0.005 M NaOH , (c) 0.002 M HBr , (d) 0.002 M KOH
77. Calculate the pH of the following solutions :

2 g of TIOH dissolved in water to give 2 litre of solution.

## - Watch Video Solution

78. Calculate the pH of the following solutions :
0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solutions.

## - Watch Video Solution

79. Calculate the pH of the following solutions :
0.3 g of NaOH dissolve in water to give 200 mL of solutions.

## - Watch Video Solution

80. Calculate the pH of the following solutions :

1 mL of 13.6 M HCl is diluted with water to give 1 litre of solutions.

## - Watch Video Solution

81. The degree of ionisation of a 0.1 M bromoacetic acid solution is 0.132 .

Calculate the pH of the solution and the $\rho K_{a}$ bromoacetic acid.

## - Watch Video Solution

82. The pH of 0.005 M codeine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95 Calculate its ionisations contant and $\rho K_{b}$.

## - Watch Video Solution

83. Determine the degree if ionization and pH of $0.05 M$ of ammonia solution. The ionization constant of ammonia can be taken from Table 7.7.

Also calculate the ionization constant of the conjugate acid of ammonia.

## - Watch Video Solution

84. Calculate the degree of ionisation of 0.05 M acetic acid if its $p K_{a}$, value is 4.74 . How is the degree of dissociation affected when its solution also contains
(a) 0.01 M
(b) 0.1 M in HCl ?

## - Watch Video Solution

85. The ionisation constant of dimethylamine is $5.4 \times 10^{-4}$ Calculate its degree of ionisation in its 0.02 M solution. What percentage of dimethylamine is ionised if the solution is also 0.1 M in NaOH ?

## - Watch Video Solution

86. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below :

Human muscle-fluid, 6.83

## - Watch Video Solution

87. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below :

Human Stomach fluid 1.2

## - Watch Video Solution

88. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:
(a) Human muscle-fluid, 6.83 , (b) Human stomach fluid, 1.2
(c) Human blood, 7.38 , (d) Human saliva, 6.4.
89. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:
(a) Human muscle-fluid, 6.83 , (b) Human stomach fluid, 1.2
(c) Human blood, 7.38 , (d) Human saliva, 6.4 .

## - Watch Video Solution

90. The pH of milk, black coffee, tomato juice, lemon juice and egg white are $6.8,5.0,4.2,2.2$ and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.

## - Watch Video Solution

91. If 0.561 g of KOH is dissolved in water to give 200 mL of solution at 298
K. Calculate the concentrations of potassium, hydrogen and hydroxyl ions. What is its pH ?
92. The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 \mathrm{~g} / \mathrm{L}$ of solution Calculate the concentration of strontium and hydroxyl ions and the pH of the solutions.

## - Watch Video Solution

93. The ionization constant of propanoic acid is $1.32 \times 10^{-5}$. Calculate the degree of ionization of the acid in its 0.05 M solution and also its pH .

What will be its degree of ionization if the solution is 0.01 M in HCl also?

## - Watch Video Solution

94. The pH of 0.1 M solution of cyanic acid (HCNO) is 2.34 . Calculate the ionization constant of the acid and its degree of ionization in the solution.

## - Watch Video Solution

95. The ionization constant of nitrous acid is $4.5 \times 10^{-4}$. Calculate the pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis.

## - Watch Video Solution

96. A 0.02 M solution of pyridinium hydrochloride has $\mathrm{pH}=3.44$. Calculate the ionization constant of pyridine.

## - Watch Video Solution

97. Predict if the solutions of the following salts are neutral, acidic or basic: $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{2}$ and KF

## - Watch Video Solution

98. The ionization constant of chloroacetic acid is $1.35 \times 10^{-3}$. What will be the pH of 0.1 M acid and its 0.1 M sodium salt solution?
99. Ionic product of water at 310 K is $2.7 \times 10^{-14}$. What is the pH of neutral water at this temperature?

## - Watch Video Solution

100. Calculate the PH of the resultant mixture :

10 mL of $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}+25 \mathrm{~mL}$ of 0.1 M HCl

## - Watch Video Solution

101. Calculate the PH of the resultant mixture :

10 mL of $0.01 \mathrm{M}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of $0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$

## - Watch Video Solution

102. Calculate the PH of the resultant mixture :

10 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of 0.1 M KOH

## - Watch Video Solution

103. Describe the effect of :
removal of $\mathrm{CH}_{3} \mathrm{OH}$

## - Watch Video Solution

104. The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr are $1.1 \times 10^{-12}$ and $5.0 \times 10^{-13}$ respectively. Calculate the ratio of the molarities of their saturated solutions.

## - Watch Video Solution

105. Equal volumes of 0.002 M solutions of sodium iodate and cupric chlorate are mixed together. Will it lead to precipitation of copper iodate? (For cupric iodate $K s p=7.4 \times 10^{-8}$ ).

## - Watch Video Solution

106. The ionization contant of benzoic acid is $6.46 \times 10^{-5}$ and $K_{s p}$ for silver benzoate is $2.5 \times 10^{-13}$. How many times is silver benzoate more soluble in abuffer of $\mathrm{pH}=3.19$ compared to its solubility in pure water ?

## - Watch Video Solution

107. What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide,

$$
\left.K_{s p}=6.3 \times 10^{-18}\right) .
$$

108. What is the minimum volume of water required to dissolve 1 g of calcium sulphate at 298 K ? (For calcium sulphate, $K_{s p}$ is $9.1 \times 10^{-6}$ ).

## - Watch Video Solution

109. The concentration of sulphide ion in 0.1 M HCl solution saturated with hydrogen sulphide is $1.0 \times 10^{-19} \mathrm{M}$. If 10 mL of this is added to 5 mL of $0.04 M$ solution of the following: $\mathrm{FeSO}_{4}, \mathrm{MnCl}_{2}, \mathrm{ZnCl}_{2}$ and $\mathrm{CdCl}_{2}$. in which of these solutions precipitation will take place?

## - Watch Video Solution

