

CHEMISTRY

BOOKS - NAGEEN CHEMISTRY (ENGLISH)

ORGANIC CHEMISTRY : SOME BASIC PRINCIPLES AND TECHNIQUES

1. Write the IUPAC name of the following compound:

2. Write the IUPAC names of the following compounds:

$$CH_3- egin{array}{cccc} CH_3& CH_2CH_3& CH_2CH_3\ ert & ert & ert \ CH_3- egin{array}{cccc} CH_2- & ert \ CH \ CH_2- egin{array}{cccc} ert \ CH \ CH \ CH_2CH_3 \ ert \ CH_2CH_3 \end{array} & ert \ CH \ CH \ -CH \ CH \ -CH \ CH \ -CH_3 \end{array}$$

Watch Video Solution

3. Write the IUPAC names of the following compounds:

$$(CH_3)_2C= \stackrel{H}{\overset{H}{\overset{CH_3}{\overset{H}{}}} CH_3= C(CH_3)_2.$$

Watch Video Solution

4. Write the IUPAC name of the following compound:

$$CH_3 - \overset{O}{C} - \overset{CH_3}{CH_3} = \overset{Cl}{C} - \overset{CH_3}{C} + \overset{Cl}{H} - \overset{CH_3}{C} + \overset{NO_2}{H} + \overset{I}{H} +$$

$$CH_3 - CH - CH = CH - egin{array}{cccc} CH_3 & NO_2 & O \ & & | \ C_2H_5 & C_2H_5$$

Watch Video Solution

6. Give the IUPAC name of the following compound:

7. Derive the structure of the compound having IUPAC name 3-amino-4methylpentan -1-oic acid. **8.** 0.29 g of an organic compound were analysed by Liebig's method. The increase in the mass of U-tube and the potash bulbs at the end of the experiment were found to be 0.27 g and 0.66 g respectively. Calculate the percentage of carbon and hydrogen in it.

Watch Video Solution

9. In Duma's method 0.206 g of an organic compound gave $18.8cm^3$ of moist N_2 at $17^\circ C$ and 760 mm Hg pressure. If aqueous at $17^\circ C$ is 14.5 mm Hg, calculate the percentage of nitrogen in the given organic compound.

10. 0.303 g of an organic compound was analysed for nitrogen by Kjeldahl's method. The ammonia evolved was absorbed in 50 ml of 0.1 N

 H_2SO_4 . The excess acid required 25 ml of 0.1 N NaOH for neutralisation.

Calculate the percentage of nitrogen in the compound.

Watch Video Solution

11. 0.25g of an organic compound containing carbon hydrogen and oxygen only were analysed by the combustion method. The increase in the weights of the U tube and the potash bulbs at the end of the operation were found to be 0.15g and 0.1837g respectively. Determine the percentage composition of the compound.

12. 0.246 g of an organic substance when heated with excess of fuming nitric acid and silver nitrate gave 0.2584 g of silver bromide. Calculate the percentage of bromine in the compound.

13. In a Carius determination, 0.234 g of an organic substance gave 0.334 g of barium sulphate. Calculate the percentage of sulphur in the given compound

Watch Video Solution

14. 1.5 g of an organic compound in a quantitative determination of phosphorus gave 2.5090 g of $Mg_2P_2O_7$. Calculate the percentage of phosphorus in the compound.

Watch Video Solution

15. 0.1092 g of a dibasic acid is exactly neutralized by $21cm^3$ of 0.1N NaOH.

Calculate the molecular mass of the acid.

16. 1.26 g of a dibasic acid were dissolved in water and the solution made up to 200 mL 20 mL of this solution were completely neutralised by 10 mL of $\frac{N}{5}$ NaOH solution. Calculate the equivalent mass and molecular mass of the acid.

Watch Video Solution

17.0.76 g of a silver salt of a dibasic acid on ignition gave 0.54 g of silver.

Calculate the molecular mass of the acid.

Watch Video Solution

18. 0.400 g of chloroplatinate salt of a monoacid base on ignition gave

0.125 g of platinum. Find the molecular mass of the base.

19. 0.2 g of a monobasic acid gave 0.5 g of CO_2 and 0.089 g of H_2O . 0.122 g of the same acid requires 10 mL of 0.1 N NaOH for complete neutralisation. Determine the molecular formula of the compound.

20. A sample of 0.50 g of an organic compound was treated according to Kjeldahl's method. The ammonia evolved was absorbed in 50 mL of 0.5 M H_2SO_4 . The residual acid required 60 mL of 0.5 M solution of NaOH for neutralisation. What would be the percentage composition of nitrogen in the compound?

Watch Video Solution

21. A hydrocarbon contains 10.5g of carbon per gram of hydrogen. 1L of vapour of the hydrocarbon at $127^{\circ}C$ and 1 atm pressure weighs 2.8g. Find the molecular formula of the hydrocarbon.

22. An organic liquid on analysis yielded the following results:

(i) Elements present: C, H, N and S

(ii) On combustion, C and H were found to be 41.37% and 5.75% respectively.

(iii) On Kjeldahlising, the ammonia obtained from 1.01 g of the substance was neutralised by 11.6 mL of N-HCI.

(iv) In the Carius estimation of sulphur, 0.2066 g of the substance resulted in the precipitation of 0.5544 g of $BaSO_4$

(v) 0.1015 g of the liquid, when vaporised displaced 27.96 mL of dry air measured at 15° C and 750 mm pressure.

Find the molecular formula of the liquid.

Watch Video Solution

23. An acid of molecular mass 104 contains 34.6% carbon and 3.85% hydrogen. 3.812 mg of the acid required 7.33 cm of 0.01 N NaOH for neutralisation. Suggest a structure for the acid.

24. An organic compound containing carbon hydrogen and oxygen contains 52 .2 % carbon and 13.04 % hydrogen .Vapour density of the compound is 23 .Its molecular formula will be

Watch Video Solution

25. The alkyl halide $C_4H_9Br(A)$ reacts with alcoholic KOH and gives an alkene (B) which reacts with bromine to give a dibromide (C). (C) is transformed with sodamide into a gas (D) which forms a precipitate when passed through ammoniacal silver nitrate solution. Give the structural formulae of the compounds (A), (B), (C) and (D) and explain the reactions involved.

26. A hydrocarbon (A) containing 90% carbon and having V.D. 20 reacts with dil. H_2SO_4 in the presence of H_2SO_4 to give (B). Compound (B) is reduced by $LiAIH_4$ to (C) which on heating with H_2SO_4 gives (D). Compound (A) can be converted into (D) directly by hydrogenation in the presence of deactivated palladium-calcium carbonate catalyst. Identity the compounds (A) to (D) and explain the reactions involved.

27. Write the structural formula of the compounds having the following IUPAC names:

Butane-2, 3-dione

28. What type of salt is Ammonium Chloride?

29. An organic compound (A) having molecular formula C_2HCl_3O reduces Fehling's solution and on oxidation gives a monocarboxylic acid (B) with molecular formula $C_2HCl_3O_2$. Upon distillation with sodalime, (B) gives a sweet smelling liquid (C) containing 89.12% chlorine. (C) can also be obtained by heating (A) with alkali. Identity (A), (B) and (C) and explain the reactions involved.

30. Classify the following as Z or E isomers.

31. Classify the following as Z or E isomers.

Watch Video Solution

32. Classify the following as Zor E isomers.

33. Classify the following as Zor E isomers.

3. What do you understand by the terms catenation and isomerism?

Watch Video Solution

4. Write the various types of formulae of the following compounds : Butane, Isobutane, Ethyl alcohol, Methylamine.

Watch Video Solution

5. Find the types of all the carbon atoms present in the following compound.

 $CH_3 - CH = CH \stackrel{CH_3}{\stackrel{}{C}H} H - CH_3$

Watch Video Solution

9. Give the systematic IUPAC names of the following compounds :

$$HC\equiv C-egin{array}{c} CH_3\ dots\ CH_2\ -CH_2-CH=CH_2\ dots\ C_2H_5\ dots\ C_2H_5\ dots\ dots$$

$$CH_3-egin{array}{c} CH_3\ dots\ CH_3\ \dots\ CH_3\ \d$$

Watch Video Solution

Watch Video Solution

13. Give the systematic IUPAC names of the following compounds :

$$(CH_3)_2 C = CH - CH_2 - CH = C(CH_3)_2$$

15. Give the systematic IUPAC names of the following compounds :

 $CH_3-\overset{C_2H_5}{\overset{}{
m CH}} CH=C=C-CH_2-C\equiv C-\overset{C_2H_5}{\overset{}{
m C}} H-CH_3$

17. Give the systematic IUPAC names of the following compounds :

$$CH_2 \qquad CH_2 \qquad CH_2 \ H_3 - \stackrel{||}{C} - CH = CH - \stackrel{||}{C} - CH_3$$

$$CH_3-CH= egin{array}{c} CH_3 \ dot \ CH_3 - CH_2 OH \end{array}$$

Watch Video Solution

19. Write the systematic IUPAC names of the following compounds :

$$CH_{3}-egin{array}{c} CH_{2}COOH \ CH_{3}-egin{array}{c} | \ CH_{2}COOH \ CH_{3}-CH_{3} \end{array}$$

Watch Video Solution

20. Write the systematic IUPAC names of the following compounds :

$$\stackrel{O}{\overset{||}{CH_3}}-\stackrel{O}{\overset{||}{C}}-CH_2-CH_2OH$$

22. Write the systematic IUPAC names of the following compounds :

 $CH_3 - \overset{Cl}{\overset{}{igcar}} H - CH_2 - CH = CH_2$

$$CH_3- egin{array}{ccc} NO_2 & Cl & CH_3 \ ert & ert & ert \ H - egin{array}{ccc} Cl & CH_3 \ ert & ert \ H - CH_2 CHO \ ert & ert \ L \ ert & ert \ L \ ert \end{pmatrix}$$

Watch Video Solution

24. Write the systematic IUPAC names of the following compounds :

$$CH_3-CH_2-CH_2-\overset{O}{\overset{||}{C}}-OCH_2CH_3$$

Watch Video Solution

25. Write the systematic IUPAC names of the following compounds :

$$CH_3-egin{array}{ccc} CH_3&O\dots&dots\ CH_3-egin{array}{ccc} O\dots\ CH_2-CH_2-COOH\dots\ CH_2-COOH \end{array}$$

$$CH_3-C\equiv C-CH_2-\overset{O}{\overset{||}{C}}-NH_2$$

Watch Video Solution

27. Write the systematic IUPAC names of the following compounds :

Watch Video Solution

28. Write the systematic IUPAC names of the following compounds :

 $Cl \ ert CH_3 - ec{Cl} CH_2 - O - CH_2 CH_3$

$$CH_3- egin{array}{c} O-CH_2CH_3 \ dots \ H-CH=CH-CH_2CHO \ dots \ H-CH_2CHO \end{array}$$

$$CN \qquad \begin{array}{c} CH_3 & Cl \ CH_3 & Cl \ ert & ert & ert \ CH_2 - & ect \ C \ H - \ CH - \ CH - \ CH_2 CN \end{array}$$

$$CH_{3} - egin{array}{c} CH_{3} & C_{2}H_{5} \ dots \ \ dots \ dots \ \ \$$

Watch Video Solution

33. Write the systematic IUPAC names of the following compounds :

 $\begin{matrix} o & o \\ || & || \\ H - C - C - H \end{matrix}$

Watch Video Solution

43. Write the systematic IUPAC names of the following compounds :

HOOC - CH = CH - COOH

Watch Video Solution

45. Write the systematic IUPAC names of the following compounds :

 $C_6H_5 - CH = CH - COOH$

Watch Video Solution

46. Write the systematic IUPAC names of the following compounds :

$$CH_2 - egin{array}{c} OCH_3 & O \ dots \ OCH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 \end{array}$$

$$CH_3-\overset{O}{\overset{egin{array}{c} 0}{C}}-CH_2-\overset{O}{\overset{egin{array}{c} 0}{C}}-OC_2H_5$$

Watch Video Solution

48. Write the systematic IUPAC names of the following compounds :

$$CH_3-CH_2-\overset{CH_2-C\equiv N}{\overset{}{CH_2-C\equiv N}} -CH_2-C\equiv N$$

Watch Video Solution

49. Write the systematic IUPAC names of the following compounds :

$$CH_3 - CH - COOH \ ert OOH_2 - COOH$$
50. Write the systematic IUPAC names of the following compounds :

1

Watch Video Solution

51. Write the systematic IUPAC names of the following compounds :

52. Write the systematic IUPAC names of the following compounds :

$$CH_3- egin{array}{c} O \ ert H - egin{array}{c} O \ ert ert \ H - O \ ert H - O \ ert H - O \ ert H_3 \end{array}$$

Watch Video Solution

53. Derive the structures of the compounds having the following IUPAC

names.

5-methylhept-3-enal

Watch Video Solution

54. Derive the structures of the compounds having the following IUPAC

names.

3-methyl-5-(1,2-dimethylpropylhept-6-en-1-oic acid

55. Derive the structures of the compounds having the following IUPAC names.

4-oxopentan-1-al

Watch Video Solution 56. Derive the structures of the compounds having the following IUPAC names. 2-amino-3-hydroxy-4-oxopentan-1-oic acid

Watch Video Solution

57. Derive the structures of the compounds having the following IUPAC

names.

2-ethyl-2-methylbutan-1-ol

58. Derive the structures of the compounds having the following IUPAC

names.

Prop-2-ene-1-nitrile

Watch Video Solution

59. Derive the structures of the compounds having the following IUPAC

names.

2, 3-dimethylcyclopent-1-ene

Watch Video Solution

60. Derive the structures of the compounds having the following IUPAC

names.

5, 6-dimethylcyclohex-2-en-1-one

61. Derive the structures of the compounds having the following IUPAC

names.

4-methylpent-3-en-2-one

62. Derive the structures of the compounds having the following IUPAC names.

2, 3-dimethylcyclopentan-1-ol

Watch Video Solution

86. Write the structures of the compounds having the following names:

2-methylbenzenamine

88. Write the structures of the compounds having the following names:

3-phenylpropanal

89. Write the structures of the compounds having the following names:

4-ethyl-2-fluoro-1-nitrobenzene

90. Write the structures of the compounds having the following names:

Methylbenzoate

Watch Video Solution

91. Write the structures of the compounds having the following names:

1-phenylethanone

Watch Video Solution

92. Write the structures of the compounds having the following names:

p-tolylcarbylamine.

93. What is isomerism? Give a precise definition and explain with examples.

94. What type of isomerism is shown by the following pairs of compounds ? (i) Butan-1-ol and Butan-2-ol (ii) But-1-yne and Buta-1, 3-diene (iii) 1-aminobutane and 1-amino-2-methylpropane.

Watch Video Solution

95. What is the main difference between position isomerism and functional isomerism? Explain with an example.

96. Write all the possible isomers which can be obtained from the molecular formula $C_4 H_{10} O.$

97. What is tautomerism ? Give two examples.

Watch Video Solution

98. What is the difference between tautomerism and resonance ? Explain

with an example.

> Watch Video Solution

99. Write the keto and enolic forms of acetone.

104. What is geometrical isomerism and what type of compounds do

exhibit it?

Watch Video Solution

105. Can a compound of the type aaC = Cab show geometrical isomerism?

If not, explain why?

Watch Video Solution

106. Write the structures of geometrical isomers of the following compounds : (1) CHCOOH = CHCOOH (ii) $C_6H_5 - CH = CHCOOH$ (iii) $CH_2CH = CHCH_3$.

107. Explain the cause of geometrical isomerism and state the properties

of geometrical isomers.

111. Define chirality. How does it give rise to the phenomenon of optical

activity?

Watch Video Solution 112. When is a molecule said to be dissymmetric ? Give a brief account of the elements of symmetry. Watch Video Solution **113.** Define optical isomerism and give a brief account of optical isomers. Watch Video Solution 114. (i) What are disinfectants ? Given an example. (ii) Given two example of macro-molecules that are chosen as drug

targets.
(iii) What are anionic detergents ? Give an example .
Watch Video Solution
115. Discuss the optical isomerism of lactic acid.
Watch Video Solution

116. Which of the following molecules would you expect to be optically

active ?

 $(i)CCl_2$

(ii) CHClBrF

(iii) 2-methylbutane

 $(iv)CH_3CH_2COOH$

(v) Butan-2-ol

(vi) 2-hydroxypropanoic acid.

117. What are enantiomers ? Describe their important properties.

Watch Video Solution
118. What is a fractionating column and how does it work? Watch Video Solution
119. Why does a mixture of aniline and water boil at a temperature much below the individual boiling points of the two ?
120. What technique would you use to separate the following mixtures ?

A solution of liquid A (b.p. 380 K) and liquid B (b.p.280 K)

121. What technique would you use to separate the following mixtures ?

A solution of liquid X (b.p. 340 K) and liquid Y (b.p.332 K)

Watch Video Solution	

122. What technique would you use to separate the following mixtures ?

A mixture of sugar and common salt

Watch Video Solution

123. What technique would you use to separate the following mixtures ?

A mixture of camphor and common salt

124. What technique would you use to separate the following mixtures ?

A mixture of benzoic acid and naphthalene.

125. How will you purify an impure sample of (i) aniline (ii) benzoic acid

(iii) nitrobenzene?

Watch Video Solution

126. If a liquid compound decomposes at its boiling point, which method

(s) can you choose for its purification. It is known that the compound is

stable at low pressure, steam volatile and insoluble in water

Watch Video Solution

127. What is the basis of separation in chromatography?

128. Nitrobenzene $(C_6H_5NO_2)$ can be distilled with steam under one atmosphere pressure at a temperature of 372.2 K. Calculate the amount of steam necessary to distil 0.1 kg of nitrobenzene. The vapour pressure of water at 372.2 K is 739 mm.

Watch Video Solution

129. In the steam distillation of an organic oil (immiscible with water), the mixture of oil and water boils at 372 K under 1 atm pressure. The vapour pressure of water is 595 mm of Hg at this temperature. The collected condensate contains 50% by weight of the oil. Calculate the molecular weight of the oil.

Watch Video Solution

130. Why is it necessary to fuse the compound with sodium in the detection of N, S or halogens by Lassaigne's test?

131. On adding $AgNO_3$ to the Lassaigne solution of a compound, which

colour will be obtained if the compound contains

(i) CI (ii) Br (iii) (iv) N (v) S?

Watch Video Solution

132. What precaution would you take to detect the presence of a halogen in an organic compound by Lassaigne's test if the compound contains nitrogen or sulphur also ?

Watch Video Solution

133. Why is Beilstein's test not regarded as a reliable test for the detection of a halogen in an organic compound?

134. 0.2346 g of an organic compound containing carbon, hydrogen and oxygen only were analysed by the combustion method. The increase in the weights of the U-tube and the potash bulbs at the end of the operation were found to be 0.2754 g and 0.4488 g respectively. Determine the percentage composition of the compound.

Watch Video Solution

135. 0.1986 g of an organic substance when analysed by Duma's method give 32.96 ml of moist nitrogen measured at 14°C and 755 mm pressure. Calculate the percentage of nitrogen in the substance. (Aqueous tension at 14° C = 12 mm)

136. In Kjeldahl's method, the gas evolved from 1.325 g sample of a fertiliser is passed into 50 ml of 0.2030 N $H_2SO_4.25.32$ ml of 0.1980 N

NaOH are required for the titration of unused acid. Calculate the percentage of nitrogen in the fertiliser.

Watch Video Solution

137. 0.3780 g of an organic chloro compound gave 0.5740 g of silver chloride in Carius estimation. Calculate the percentage of chlorine present in the compound.

> Watch Video Solution

138. 2.18g of an organic compound containing sulphur produces 1.02 g of

 $BaSO_4$. The percentage of sulphur in the compound is

139. 0.14 g of a substance on evaporation by Victor Meyer's method, displaced 36 mL of air over water at 20° C and 750 mm Hg. Calculate the

molecular mass of the substance. (Aqueous tension at $20^{\,\circ}\,C$ = 17.4 mm)

Watch Video Solution

140. An organic compound containing bromine gave the following results: (i) 0.125 g of the compound on complete combustion gave 0.1 g of CO_2 and 0.051 g of water. (ii) 0.185 g of the compound gave 0.32 g of AgBr. Sony Calculate the empirical formula of the compound.

Watch Video Solution

141. An organic compound (A) contatns 20% C, 46.66% N and 6.66% H. It

gave NH3 gas on heating with NaOH. The organic compound (A) could be

142. A monobasic acid has 68.9% C and 4.8% H. 0.122 g of acid require 10

mL of N/10 caustic soda solution for neutralisation. What is the molecular

Watch Video Solution

143. An organic compound contains 69.4% carbon and 5.8% hydrogen. A sample of 0.303 g of this compound was analysed for nitrogen by Kjeldahl's method. The ammonia evolved was absorbed in 50 mL of 0.05 M H_2SO_4 . The excess acid required 25 mL of 0.1 M NaOH for neutralisation. Determine the molecular formula of the compound, if its molecular mass is 121.

144. A volatile organic compound contains 10% C, 0.84%H and 89.12% Cl. In Victor Meyer's method, 0.6 g of the substance displaced 112 mL of air at S.T.P. Find out the molecular formula of the compound.

145. 0.45 g of a dibasic acid on combustion gave 0.44 g of CO_2 and 0.09 g H_2O . The molecular mass of the acid is 90. Calculate the molecular formula. Suggest a structure for the acid.

146. A mono acid base gave the following results :

(1) On combustion 0.20 g of the base gave 0.58 g of CO_2 and 0.15 g of water.

(ii) In Duma's method, 0.3 g of it gave 32.7 mL nitrogen at 288 K and 760

mm pressure.

(iii) 0.54 g of it required 12.50 mL of 0.4 N HCl for complete neutralisation.

Determine the molecular formula of the base.

147. 0.76 g of a silver salt of a dibasic acid on ignition gave 0.54 g of silver.

Calculate the molecular mass of the acid.

148. 0.984 g of a chloroplatinate salt of a diacid base on ignition gave 0.39

g of platinum. Find the molecular mass of the base.

Watch Video Solution

149. 0.20 g of an anhydrous dibasic acid gave on combustion 0.040 g water and 0.195 g CO_2 .0.5 g of its silver salt on ignition gave 0.355 g of silver. What is the molecular formula of the acid ?

Watch Video Solution

150. The silver salt of a monocarboxylic acid contains 55.1% silver. Find the molecular mass of the acid.

151. 0.984 g of a chloroplatinate salt of a diacid base on ignition gave 0.39

g of platinum. Find the molecular mass of the base.

Watch Video Solution

152. An organic compound A containing C, H and O has a pleasant odour with boiling point of $78^{\circ}C$. On boiling A with concentrated H_2SO_4 , a colourless gas is produced which decolourless bromine water and alkaline $KMnO_4$. The organic liquid A is

153. An organic compound (A) having C = 16.27%, H = 0.677%, Cl = 72.203% reduces Fehling solution and on oxidation gives an acid (B) having C = 14.679%, H = 0.612% and Cl = 65.137%. (B) on distillation with sodalime gives a sweet smelling liquid (C) which contains 89.12% chlorine. (C) can also be obtained by heating (A) with alkali. (A) can also be obtained by the

action of Cl2 on C_2H_5OH . Identify (A), (B) and (C) and explain the reactions.

Watch Video Solution

154. A primary alcohol (A) with V.D. = 29 contains C = 62.1%, H = 10.3%. It reacts with bromine to form a derivative (B) which contains C = 16.5%, H = 2.7% and Br = 73.4%. Identify (A) and (B).

Watch Video Solution

155. A compound (X) having molecular formula C_6H_{10} gave 2methylpentane on treatment with H_2 in the presence of Pd. When treated with dilute H_2SO_4 containing $HgSO_4$, it yielded another compound having molecular formula $C_6H_{12}O$. Compound X did not react with ammonical CuCl and metallic sodium. Identity X.

156. A dihaloalkane (A), $C_2H_8Cl_2$ on reaction with alc. KOH gives (B), C_6H_6 . (B) does not form white precipitate with ammonical silver nitrate and on hydrogenation absorbs two moles of hydrogen to give n-butane. Compound (B) reacts with two molecules of ozone to form a diozonide which on reductive hydrolysis gives two moles of formaldehyde and one mole of glyoxal. Identify (A) and (B) and explain the reactions.

157. Establish the structure of a hydrocarbon C_5H_{10} from the following facts :

(i) The hydrocarbon yields 2-methyl butane on catalytic reduction.

(ii) The hydrocarbon adds HBr to form a compound (B) which on reaction

with moist silver oxide produces an alcohol (C).

(iii) The alcohol (C) on oxidation gives a ketone containing the same number of carbon atoms.

158. A hydrocarbon (V.D. = 27) containing C = 88.88% decolourised $KMnO_4$ solution and bromine water with evolution of HBr. It gave no precipitate with either ammoniacal silver nitrate or cuprous chloride solution. When treated with dil. H_2SO_4 in the presence of $HgSO_4$, it gave methyl ethyl ketone. What is the hydrocarbon ?

Watch Video Solution

159. An organic compound (A) having V.D. = 30 contains C = 60.0% and H= 13%. On treatment with PCI5 it gave another compound (B) which contained 45.2% chlorine and on hydration it produced a hydrocarbon (C) containing 85.7% C and 14.3% hydrogen. On successive treatment with HI and moist silver oxide, (C) gave a compound (D) which was isomeric with (A). Identity (A), (B), (C) and (D) and explain the reactions.

View Text Solution

160. An organic compound $E(C_5H_8)$ on hydrogenation gives compound $F(C_5H_{12})$. Compound E on ozonolysis gives formaldehyde and 2-ketopropanal. Deduce the structure of compound E.

Watch Video Solution

161. An aliphatic hydrocarbon (A) of molecular weight 58 yields on chlorination a monochloroderivative (B) which on treatment with aqueous alkali gives an alcohol (C). The alcohol shows positive Lucas test immediately and easily dehydrated to form the compound (D) which on ozonolysis yields a ketone (E) as one of the products. Dry distillation of the calcium acetate as well as heating of two molecules of acetic acid with MnO at 250°C also gives the same ketone (E). Identity compounds (A) to (E) and explain the reactions.

162. Arrange the following in the order as mentioned :

 $(CH_3)_3C - (CH_3)_2CH - CH_3CH_2 - CH_3$ - groups in the order of

increasing + I-effect,

 $-CN, -CI, -OH, -NO_2$ groups in the order of decreasing -l-

effect,

Watch Video Solution

164. Arrange the following in the order as mentioned :

$$\stackrel{+}{C}H_3CH_3\stackrel{+}{C}H_2, {(CH_3)}_2CH^+, {(CH_3)}_3$$
+ C carbocations in the order of

increasing reactivity,

165. Arrange the following in the order as mentioned :

 $1^\circ, 2^\circ, 3^\circ$ free radicals in the order of decreasing stability.

Watch Video Solution

166. What are the main points of difference between inductive and electromeric effects ?

Watch Video Solution

167. Explain the

I-effect leads to the development of partial charges while the E-effect to

the full positive and negative charges.

168. Explain the

Hyperconjugation effect is also termed as 'no bond resonance'.

169. Explain the

 CH_3 is more reactive than CH_3CH_2 free radical.

Watch Video Solution

170. Explain the

The carbanions are very reactive species although their central carbon

atom possesses an octet.

Watch Video Solution

171. Explain the

 BF_3 acts as an electrophile.

172. Explain the
CH_3NH_2 acts as a nucleophile.
Watch Video Solution
173. Why is in the presence of diethyl peroxide, the addition of HBr to
propene is against Markownikoff's rule?
Watch Video Solution
174. Why is chloroacetic acid is a stronger acid as compared to acetic acid
?

Watch Video Solution

175. Explain the

 $(CH_3)_3C^{\,-}$ is less stable than $\overline{C}H_3.$

176. Explain the

A singlet carbene has a bent structure.

Watch Video Solution

Very Short Answer Type Questions

1. Name the organic compound that was first prepared in the laboratory,

Who did prepare this compound?

Watch Video Solution

2. Define organic chemistry.

3. What do you understand by isomerism?

Watch Video Solution
4. What are aromatic compounds ? Give at least two examples.
Vatch Video Solution
5. Write the structural and graphic formulae of the compounds having
S. Write the structural and graphic formalize of the compounds having
the following molecular formulae.
$C_2 H_6$

Watch Video Solution

6. Write the structural and graphic formulae of the compounds having

the following molecular formulae.

 C_3H_6

7. Write the structural and graphic formulae of the compounds having the following molecular formulae.

 C_3H_4

Watch Video Solution

8. Identify primary, secondary, tertiary and quaternary carbon atoms in

the following compound :

$$CH_3 - egin{array}{ccc} CH_3 & C_2H_5 & \ ert & ert & ert \ CH_3 - egin{array}{ccc} ert & ert & ert \ ert \ CH_3 & ert \ CH_3 & ert \end{array}
ight) H - CH_3$$

9. Write the graphic formulae of the following alkyl groups : ethyl, n-propyl, iso-propyl, sec-butyl, t-butyl.

13. Write the structure and IUPAC names of the following compounds:

Isobutane

Watch Video Solution
14. Write the structure and IUPAC names of the following compounds:
Neopentane
Watch Video Solution
15. Write the structure and IUPAC names of the following compounds:

Succinic acid.

Watch Video Solution

16. Give the IUPAC names of the following compounds:

$$CH_2=CH- egin{array}{c} CH_2CH_3 \ dot \ H_2=CH_2 \ dot \ CH_2=CH_2 \ \dot \ CH_2 \ \dot \ CH_2=CH_2 \ \dot \ CH_2=CH_2 \ \dot \ CH_2=CH_2 \ \dot \ CH_2=CH_2 \ \dot \ CH_2 \$$

17. Give the IUPAC names of the following compounds:

 CH_2OH

CHOH

 CH_2OH

Watch Video Solution

18. Give the IUPAC names of the following compounds :

 $(CH_3)_3C - CH = CH_2$

Watch Video Solution

19. Write the systematic IUPAC names of the following compounds :

 $C_6H_5 - CH = CH - COOH$

20. Write the IUPAC names of the following compounds :

$$CH_3 = egin{array}{c} CH_3 & O \ dots \ H - CH_2 - CH_2 - egin{array}{c} O \ dots \ \ dots \ \ dots \ \ dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$$

24. Write the IUPAC names of the following compounds :

$$CH_3-CH_2-egin{pmatrix} CH_3\ dot CH_3\ dot CH_2OH \ dot CH_2CH_3 \ dot CH_2CH_3 \ dot CH_2CH_3 \ dot CH_2OH \ dot CH_2CH_3 \ dot CH_3CH_3 \ dot C$$

Watch Video Solution

25. Write the IUPAC names of the following compounds :

$$CH_2 = CH - \mathop{C}_{ert = CH}_{ert = CH - CH = CH_2 \ ert_{Br}$$

26. Write the IUPAC names of the following compounds :

 CH_2COOH

 CH_2COOH

Watch Video Solution

27. Select the principal group when the following groups are present in a

molecule.

 $-Cl, -OH, -NO_2, -CHO$

Watch Video Solution

28. Select the principal group when the following groups are present in a

molecule.

$$-Br,\;-NH_2,\;-Cl,\;-OH$$

29. Select the principal group when the following groups are present in a

molecule.

-OH, > C = O, -COOH

Watch Video Solution

30. Select the principal group when the following groups are present in a molecule.

 $-SH, -I,_CONH_2$

Watch Video Solution

31. Write the structural formula of the following compounds:

1-chloropent-1-ene-4-yne

32. Write the structural formula of the following compounds:

4-ethyl-2, 2, 6-trimethylheptane

Watch Video Solution

33. Write the structural formulae of the following compounds :

Ethane-1, 2-dial

Watch Video Solution

34. Write the structural formulae of the following compounds :

5-methylhept-3-ene.

35. Correct the following names :

2-ol-2, 3-dimethylbutane

36. Correct the following names :

1-chloro-4-pentyne-1-ene

Watch Video Solution

37. Correct the following names :

4, 4, 3-trimethyl-1-hexyne

Watch Video Solution

38. Correct the following names :

3-ethyl-2-chloro-1, 4-pentadiene.

39. Do structural isomers possess similar chemical properties?

Watch Video Solution
40. What type of isomerism is shown by isopentane and neopentane?
Watch Video Solution
41. What type of isomerism is shown by 1-butene and 2-butene?
Watch Video Solution
42. Write the possible functional isomers having the formula $C_3H_6O_2$
42. Write the possible functional isomers having the formula $C_3H_6O_2$
42. Write the possible functional isomers having the formula $C_3H_6O_2$ Watch Video Solution
42. Write the possible functional isomers having the formula $C_3H_6O_2$ Watch Video Solution

43. What is the functional isomer of ethanol?

52. Explain the cause of geometrical isomerism and state the properties

of geometrical isomers.

Watch Video Solution 53. Do geometrical isomers possess similar physical properties? Watch Video Solution 54. Name the prism passing through which ordinary light changes into plane polarised light. Watch Video Solution 55. Name the instrument used to measure the optical activity of a

substance.

56. Is the letter H chiral in nature ?

Watch Video Solution
57. When is a molecule said to be chiral?
Watch Video Solution
58. What is the necessary and sufficient condition for a molecule to be optically active ?
Watch Video Solution

59. In which direction does a d-isomer rotate the plane of plane polarised

light?

64. What do you understand by Lassaigne solution ?
65. In the Lassaigne's test for nitrogen in an organic compound, the Prussian blue colour is obtained due to the formation of:

(a) $Na_4[Fe(CN)_6]$ (b) $Fe_4[Fe(CN)_6]_3$ (c) $Fe_2[Fe(CN)_6]$ (d) $Fe_3[Fe(CN)_6]_4$

Watch Video Solution

66. For testing halogens in an organic compound with $AgNO_3$ solution, sodium extract (Lassaigne's test) is acidified with dilute HNO_3 . What will happen if a student acidifies the extract with dilute H_2SO_4 in place of dilute HNO_3 ?

67. During sodium extract preparation for Lassaigne's test both N and S

present in organic compound change to

g).

71. How is the molecular formula of a compound related to its empirical

formula ?

75. Which of the following are permanent effects ? I-effect, E-effect, M-

effect.

76. Amongst $-OH, -CN, CI, -NO_2$ groups, which do exert + M-

effect when present in conjugation with a double bond ?

Watch Video Solution

77. What type of reaction intermediates are obtained when a covalent

bond undergoes homolytic fission?

78. What is meant by a 1° carbon atom ?

79. What is the state of hybridisation of the central carbon in a carbocation ?

Watch Video Solution 80. What is the state of hybridisation of the central carbon in a carbanion ? Watch Video Solution 81. Sort out electrophiles and nucleophiles among the following: $CH_{3}^{+}CH_{2}, AlCl_{3}, C_{2}H_{5}OH, CN^{-}, CH_{3}, NO_{2},$ Watch Video Solution

82. Write the general rate law for an S_{N^2} reaction.

83. What is the optical nature of the product obtained in an S_{N^1} reaction

if the substrate is optically active ?

Watch Video Solution

84. What is the reaction intermediate in a nitration process ?

Watch Video Solution

85. Define elimination reactions.

Watch Video Solution

86. What type of structure is possessed by a triplet carbene?

87. Name a neutral electrophile and a neutral nucleophile.	87. Name a neutral	electrophile and a	neutral nucleophile.
---	--------------------	--------------------	----------------------

Watch Video Solution
Short Answer Type Questions
1. State reasons for 'Justification of a separate branch' for 'Organic Chemistry'.
Watch Video Solution
2. What is catenation ? Why is it most prominent for carbon ?
Watch Video Solution

3. What are isomers ? Write the isomers of butane and pentane.

4. What is the main difference between carbocyclic and heterocyclic compounds ?

C	Watch	Video	Solution

5. Name the different types of hydrocarbons. Give two examples each.

Watch Video Solution

6. What are alkyl groups ? Write the structures of all possible alkyl groups

which can be obtained from propane and butane.

7. What do you understand by gas?

8. In what way does an alkane differ from other hydrocarbons ?

Watch Video Solution
9. What do you understand by a homologous series ? Write its important characteristics.
C Watch Video Solution
10. There is a large number of carbon compounds due to
Watch Video Solution
11. How would you decide whether the two given compounds are homologues or not?
Watch Video Solution

12. Write the systematic IUPAC names of the following compounds:

Watch Video Solution

13. Write the systematic IUPAC names of the following compounds:

14. Write the systematic IUPAC names of the following compounds:

$$CH_3- egin{array}{c} CH_3- CH_2- CH_2 - CH_2 - CH_2 - CH_3 \ dots \ CH_3 \end{array} egin{array}{c} dots \ dots \ dots \ dots \ CH_3 \end{array}$$

Watch Video Solution

15. Write the systematic IUPAC names of the following compounds:

16. Write the systematic IUPAC names of the following compounds:

Watch Video Solution

17. Find out the error in the following names and write the correct IUPAC

names:

```
3-methyl-4 ethyl-2-hexanol
```

Watch Video Solution

18. Find out the error in the following names and write the correct IUPAC

names:

3-butanol-1-oic acid

19. Find out the error in the following names and write the correct IUPAC

names:

2-methyl-1-carboxypentene-3.

Watch Video Solution **20.** Draw the structures of the following compounds: 4-nitropent-1-yne Watch Video Solution **21.** Draw the structures of the following compounds: 5, 5-diethyl-3-nonanol Watch Video Solution

22. Draw the structures of the following compounds:

Butane-2, 3-dione

25. Draw the structures of the following compounds:

3-methyl-2-oxobutanoic acid.

31. Write the IUPAC names of the following compounds :

$$(CH_3)_2 C = C(CH_3)CH = C(C_2H_5)_2$$

Watch Video Solution

36. What do you understand by primary, secondary and tertiary hydrogen

atoms?

37. Write the IUPAC names of the following compounds : (i) t-butyl alcohol

(ii) Lactic acid (iii) Isobutyl alcohol (iv) Glycerine (v) Glycine.

38. Define isomerism and give an example.

Watch Video Solution
39. What is meant by structural isomerism ? Give an example.
Watch Video Solution
40. Define chain isomerism and give an example.
Watch Video Solution
41. Give two examples of position isomerism.
Watch Video Solution

42. What is meant by functional isomerism ? Explain with an example.

O Watch Video Solution

43. Define metamerism. What type of compounds do show it? Give an example.

Watch Video Solution

44. Write the structural formulae of all isomers of hexane.

Watch Video Solution

45. What is ring-chain isomerism ? Give an example.

46. What is the difference between tautomerism and resonance ? Explain

with an example.

54. Define specific rotation.
Watch Video Solution
55. What is meant by the chelate effect? Give an example.
Watch Video Solution
56. What is meant by chiral or asymmetric carbon?
Watch Video Solution
57. The complex that can show optical activity is :
Watch Video Solution
58. What are enantiomers ? Describe their important properties.

71. Explain why :

A black precipitate is obtained in the Lassaigne's test for the detection of

sulphur.

Watch	Video	Solution

72. Explain why :

A blue or green colour in the flame is obtained during Beilstein's test for

halogens.

Watch Video Solution

73. Explain why :

Presence of Cl in a compound cannot be detected by adding $AgNO_3$

solution to sodium extract if the compound contains nitrogen also.

```
74. Explain why :
```

No precipitate is obtained on adding $AgNO_3$ to chloromethane.

76. Describe the Carius method for the estimation of sulphur in a compound.

77. Describe the principle involved in the estimation of phosphorus in an

unknown organic compound.

78. Describe the principle and procedure of determining molecular mass of an acid by volumetric method.

Vatch Video Solution
79. Describe the principle involved in the determination of molecular
mass of an organic acid by silver salt method.

Watch Video Solution

80. On what principle is the chloroplatinate salt method for the determination of molecular mass of an organic base based ?

81. What do you understand by inductive effect? Illustrate your answer

with at least two examples.

84. Why is dichloroacetic acid stronger than monochloroacetic acid ?

85. Define electromeric effect.

87. What are the main points of difference between inductive and electromeric effects ?

88. When does mesomeric effect come into existence ? Illustrate with
examples.
Watch Video Solution
89. Define mesomeric effect and differentiate + M-effect from - M-effect.
Watch Video Solution
90. Compare inductive effect with mesomeric effect.
Watch Video Solution
91. What do you understand by hyperconjugation effect ? Illustrate with an example.

92. Explain the

Hyperconjugation effect is also termed as 'no bond resonance'.

Watch Video Solution
93. Why is the hyperconjugation effect exerted by a methyl group greater than that exerted by an ethyl group?
Watch Video Solution
94. Define heterolytic fission of a covalent bond.
Watch Video Solution
95. Why is a 3° radical more stable as compared to 1° and 2° free

radicals?
96. What are carbocations ? Give two examples.

97. Discuss the orbital structure of a carbocation. Watch Video Solution
97. Discuss the orbital structure of a carbocation. Watch Video Solution
Watch Video Solution
98. What is relative order of reactivity of various types of carbocations and carbanions ?
Watch Video Solution
99. Define carbanion and discuss its orbital structure.
Watch Video Solution

100. Why is 1° carbanion more stable than a 2 carbanion ?

Watch Video Solution
101. What are carbenes ?
Watch Video Solution
102. What are electrophilic reagents ? Give at least three examples.

Watch Video Solution

103. Why do free radicals and carbenes act as electrophiles ?

104. What do you understand by nucleophilic reagents and what type of

species act as nucleophiles ? Give at least two examples.

Watch Video Solution
105. Why does ether act as a nucleophile ?
Watch Video Solution
106. What are nucleophilic substitution reactions ? Give an example.
107. What are the reactive species involved in S_{N^1} reactions ?
Watch Video Solution

108. Explain why does a S_{N^2} reaction involve an inversion in configuration.

Watch Video Solution

109. Give three examples of electrophilic substitution reactions.

Watch Video Solution

110. Discuss the mechanism of anti-Markownikoff addition of HBr to an

unsymmetrical alkene.

Watch Video Solution

Essay Long Answer Type Questions

1. (b) Why are there very large number of organic compounds?

2. What are organic compounds and how are they classified ? Give two examples of each type.

Watch Video Solution

3. What are functional groups ? How are the organic compounds classified on the basis of functional groups ? Mention the functional group of each class and give at least one example.

> Watch Video Solution

4. Discuss with examples the procedure of nomenclature of branched chain alkanes.

5. How would you name a compound when it contains two functional

groups of different types ? Illustrate your answer with examples.

Watch Video Solution

6. What is structural isomerism ? Define different types of structural isomerism and give an example of each.

> Watch Video Solution

7. What is tautomerism ? Give two examples.

Watch Video Solution

8. Define geometrical isomerism and discuss the conditions necessary for

it. Explain with at least two examples.

9. Explain the cause of geometrical isomerism and state the properties of

geometrical isomers.

Watch Video Solution

10. Give an example of the compound containing N=N bond and able to show geometrical isomerism. Write its geometrical isomers.

Watch Video Solution

11. How is the optical rotation of an optically active compound measured

and how is it expressed ?

12. Define chirality. How does it give rise to the phenomenon of optical

activity?

13. Discuss the cause of optical activity in a molecule. Support your answer with two examples.

Watch Video Solution

14. Define optical isomerism and give a brief account of optical isomers.

Watch Video Solution

15. Discuss the optical isomerism exhibited by tartaric acids.

16. What is Lassaigne's solution and how is it prepared ? Discuss the chemistry of the tests used for the detection of following elements using

this solution.	
Ν	
Vatch Video Solution	

17. What is Lassaigne's solution and how is it prepared ? Discuss the chemistry of the tests used for the detection of following elements using this solution.

Cl

Watch Video Solution

18. What is Lassaigne's solution and how is it prepared ? Discuss the chemistry of the tests used for the detection of following elements using this solution.

Br

19. What is Lassaigne's solution and how is it prepared ? Discuss the chemistry of the tests used for the detection of following elements using this solution.

(A) Sulphur

Watch Video Solution

20. Describe the principle used and the procedure for the estimation of C

and H in an organic compound.

Watch Video Solution

21. Describe Duma's method for the estimation of nitrogen in an organic

compound.

22. Describe the principle involved in the quantitative estimation of nitrogen by Kjeldahl's method.

Watch Video Solution	
----------------------	--

23. Describe the Carius method for the estimation of sulphur in a compound.

Watch Video Solution

24. Describe Victor Meyer's method for the determination of molecular

mass of a volatile substance.

25. Describe the principle involved in the determination of molecular

mass of an organic acid by silver salt method.

26. Describe a chemical method commonly used for the determination of molecular mass of a base.

Watch Video Solution

27. What do you understand by inductive effect? Illustrate your answer with at least two examples.

Watch Video Solution

28. Define electromeric effect and differentiate between + E and - E-effects by taking suitable examples. What are the important features of this effect ?

29. Define mesomeric effect and differentiate + M-effect from - M-effect.

Watch Video Solution
30 Evolain the
Hyperconjugation effect is also termed as 'no bond resonance'.
S Watch Video Solution
31. Give a brief account of the various reaction intermediates usually

involved in organic reactions.

Watch Video Solution

32. The increasing order of stability of the following free radicals is

33. What are carbocations ? Discuss their orbital structure and explain

the relative order of the stability of various types of carbocations.

Watch Video Solution

34. What are carbanions ? Discuss their orbital structure and explain the cause of their reactivity. Why is ethyl carbanion more reactive than methyl carbanion ?

Watch Video Solution

35. What are carbenes ? Discuss the orbital structures of singlet and triplet carbenes.

36. What do you understand by electrophiles and nucleophiles and what

type of substances act as these reagents? Explain with examples.

O Watch Video Solution

37. What do you understand by S_{N^1} and S_{N^2} reactions ? Taking suitable examples, discuss their mechanism and stereochemistry.

Watch Video Solution

38. How is benzene prepared in the laboratory? Write a note on its electrophilic substitution reactions.

39. Write short notes on

Free radical substitution reactions.

40. What are addition reactions ? Discuss the mechanism of different types of addition reactions.

Watch Video Solution

41. What do you understand by elimination reactions ? Discuss the mechanism of E_1 and E_2 reactions.

Watch Video Solution

42. What are intramolecular and intermolecular forces ? Explain with suitable examples.

Watch Video Solution

Objective Multiple Choice Type Questions

1. What is the correct IUPAC name of the following compound?

 $CH_3CH_2CH_2CH_2CH_2CH_2CH - egin{pmatrix} CH_3 \ dots \ CH_3 \ dots \ CH_2CH_2CH_2CH_2CH_3 \ dots \ CH_3 \ dots \ CH_2CH_2CH_3 \ dots \ CH_2CH_3 \ dots \ CH_3 \ \dots \ CH_3 \ dots \ CH_3 \ \dots \ \dots \ CH_3 \ \dots \$

3, 4-dimethyl-3n-propylnonane

6,7-dimethyl-2-n-propyinonane

6,7-dimethyl-7-ethyldecane

4,5-dimethyl-4-ethyldecane.

A. 3, 4-dimethyl-3n-propylnonane

B. 6,7-dimethyl-2-n-propyinonane

C. 6,7-dimethyl-7-ethyldecane

D. 4,5-dimethyl-4-ethyldecane.

Answer: D

2. Name of the compound

as per IUPAC system is

A. 3, 3, 3-trimethyl-1-propane

B. 1, 1, 1-trimethyl-3-propanone

C. 3, 3-dimethylbut-1-ene

D. 1, 1-dimethyl-3-butene.

Answer: C

Watch Video Solution

3. The compound which has one isopropyl group is

2, 2, 3, 3-tetramethylpentane

2,2-dimethylpentane

2, 2, 3-trimethylpentane

2-methylpentane.

A. 2, 2, 3, 3-tetramethylpentane

B. 2,2-dimethylpentane

C. 2, 2, 3-trimethylpentane

D. 2-methylpentane.

Answer: D

Watch Video Solution

4. The IUPAC name of the compound having structure

$$C_2H_5- egin{pmatrix} |\ |\ C_2H_5- C_{CH_2} \end{pmatrix} =$$

A. 3-methyl-2-ethylbutene-1

B. 2-ethyl-3-methylbut-1-ene

C. 3-ethyl-3-methyl-butene-1

D. ethyl isopropyl ethene.

Answer: B

5. Which of the following IUPAC names is not correctly matched?

A. 2-methyl-3-ethylpentane

B. 2-ethyl-3-methylpentane

C. 3-ethyl-2-methylpentane

D. 3-methyl-2-ethylpentane.

Answer: C

6. How many isomers are possible for the alkyl group $-C_4H_9$

A. 2			
B. 3			
C. 4			
D. 5			

Answer: C

Watch Video Solution

7. The IUPAC name of the compound

 $CH_2 - CH - CH_2$ is $ert \ \begin{array}{c} U \\ ert \ CN \end{array} \ \begin{array}{c} CN \end{array} \ \begin{array}{c} CN \end{array} \ \begin{array}{c} CN \end{array} \ \begin{array}{c} CN \end{array}$

A. 1, 2, 3-tricyanopropane

B. 3-cyanopentane-1, 5-dinitrile

C. 1, 2, 3-cyanopropane

D. propanetrinitrile-1, 2, 3

Answer: A

8. Write the IUPAC names of the compound:

 $CH_2 = CH - CH \equiv C - CH_3$

A. 1, 1-dimethyl-2-propene

B. 3-methylbut-1-ene

C. 2-vinyl propane

D. 1-isopropyl ethylene.

Answer: B

> Watch Video Solution

9. The IUPAC name of $CH_3 - CH - CH_2 - CH - CHO$ will be

OH CH₃

A. 4-hydroxy-1-methylpentanal

- B. 4-hydroxy-2-methylpentanal
- C. 3-hydroxy-2-methylpentanal
- D. 3-hydroxy-3-methylpentanal.

Answer: B

Watch Video Solution

10. 2-methylbut-2-ene will be represented as

A.
$$CH_3 - CH - CH_2 - CH_3$$

 $|_{CH_3}$
B. $CH_3 - C = CH - CH_3$
 $|_{CH_3}$
C. $CH_3 - CH_2 - U = CH_2$
D. $CH_3 - CH_2 - CH_2 = CH_2$

Answer: B

11. In which of the following compounds is the numbering of carbon atoms in the chain correct?

A.
$$\stackrel{4}{C}H_{3} - \stackrel{3}{\stackrel{C}{O}}H - \stackrel{2}{C}H = \stackrel{1}{C}H_{2}$$

 $\stackrel{(L_{2}H_{5})}{\stackrel{(L_{2}H_{5})}{\stackrel{(C_{2}H_{5})}{\stackrel{(C_{2}H_{5})}{\stackrel{(C_{3}H_{3})$

Answer: B

Watch Video Solution

12. IUPAC name of $CH_3CH(OH)CH_2CH_2COOH$ is

A. 4-hydroxypentanoic acid

B. 1-carboxy-3-butanol

C. 1-carboxy-4-butanol

D. 4-carboxy-2-butanol.

Answer: A

Watch Video Solution

13. The IUPAC name of the following compounds is

$$CH_2=egin{array}{ccc} C&-CH_2-CH_3\ &CH-CH_3\ &CH_3\ &CH_3\end{array}$$

A. 2-ethyl-3-methylbut-1-ene

B. 2-isopropylbut-1-ene

C. 2-methyl-3-ethylbut-3-ene

D. ethyl isopropyl ethane.

Answer: A

14. The IUPAC name of the compound

- A. 3-phenylbutane
- B. 3-cyclohexylbutane
- C. 2-cyclohexybutane
- D. 2-phenylbutane.

Answer: D

15. Which of the following compounds is 2,2,3-trimethylhexane?

$$\begin{array}{c} CH_{3} & CH_{3} \\ \mathsf{A}. \, CH_{3} - \overset{|}{\overset{C}{C}} - \overset{|}{\overset{C}{CH_{3}}} \\ \overset{|}{\overset{CH_{3}}{\overset{CH_{3}}{\overset{CH_{3}}{}}} \\ \mathsf{B}. \, CH_{3} - \overset{|}{\overset{C}{}} \\ \overset{|}{\overset{CH_{3}}{}} \\ \mathsf{C}. \, CH_{3} - \overset{|}{\overset{C}{}} \\ \overset{|}{\overset{CH_{3}}{}} \\ \mathsf{C}. \, CH_{3} - \overset{C}{\overset{C}{}} H - CH_{2} - \overset{|}{\overset{CH_{2}}{}} \\ \overset{CH_{3}}{} \\ \overset{C$$

Answer: D

Watch Video Solution

16. The correct name of the following compound is

$$CH_{3}CH_{2}-C=CH- \stackrel{|}{\stackrel{C}{C}}H-CH_{2}-CH_{3} \ | \ CH_{3}CH_{2}-CH-CH_{2}-CH_{2}-CH_{2}-CH_{3}$$

- A. 5, 6-diethyl-3-methyldec-4-ene
- B. 5, 6-diethyl-8-methyl-dec-6-ene
- C. 6-butyl-5-ethyl-3-methyl-oct-4-ene
- D. 2, 4,5-triethyl-3-nonene.

Answer: A

17. The IUPAC name of

A. ethoxymethanone

- B. 2-methylethylpropanoate
- C. ethoxypropanone
- D. 2-methylethoxypropanone.

Answer: B

Watch Video Solution

18. The IUPAC name of $CH_3 - C \equiv C. \ CH(CH_3)_2$ is

A. 4-methylpent-2-yne

B. 4,4' -dimethyl-2-pentyne

C. methyl isopropyl acetylene

D. 2-methyl-4-pentyne.

Answer: A

19. Following types of compounds (as I, II)

 $(I)CH_3CH = CHCH_3$

are studied in terms of isomerism in

A. chain isomerism

B. position isomerism

C. conformers

D. stereo isomerism.

Answer: D

Watch Video Solution

20. The IUPAC name of $CH_3COCH(CH_3)_2$ is

A. isopropylmethyl ketone

B. 2-methylbutan-3-one

- C. 4-methylisopropyl ketone
- D. 3-methylbutan-2-one.

Answer: D

21. The IUPAC name of the compound

- A. 3,3-dimethyl-1-hydroxycyclohexane
- B. 1,1-dimethyl-3-hydroxycyclohexane
- C. 3,3-dimethylcyclohexan-1-ol
- D. 1,1-dimethylcyclohexan-3-ol.

Answer: C

22. Of the five isomeric hexanes, the isomer which can give two monochlorinated compounds is

2-methylpentane

2,2-dimethylbutane

2,3-dimethylbutane

n-hexane.

A. 2-methylpentane

B. 2,2-dimethylbutane

C. 2,3-dimethylbutane

D. n-hexane.

Answer: C

23. The IUPAC name of the compound shown below is

A. 2-bromo-6-chlorocyclohex-1-ene

- B. 6-bromo-2-chlorocyclohexene
- C. 3-bromo-1-chlorocyclohexene
- D. 1-bromo-3-chlorocyclohexene.

Answer: C

- B. 4,4-dimethyl-5, 5-diethylpentane
- C. 5,5-diethyl-4, 4-dimethylpentane
- D. 3-ethyl-4, 4-dimethylheptane.

Answer: D

25. The correct IUPAC name of the compound

A. 3-ethyl-4-ethenylheptane

B. 3-ethyl-4-propylhex-5-ene

C. 3-(1-ethyl propyl) hex-1-ene

D. 4-ethyl-3-propylhex-1-ene

Answer: D

Watch Video Solution

is

26. Which nomenclature is not according to IUPAC system?

A.
$$Br - CH_2 - CH = CH_2$$

1-bromo prop-2-ene
 CH_3
B. $CH_3 - CH_2 - CH_2 - CH_2 - CHCH_3$
 $Br CH_3 - CH_2 - CH_2 - CH_2 - CH_3$
4-bromo-2,4-dimethylhexane
C.
D. $CH_3 - ||C - CH_2 - CH_2 - CH_2 - CH_2COOH$
 O
5-oxohexanoic acid

27. The compounds butan-1-ol and 2-methylpropan-1-ol are

A. chain isomers

- B. position isomers
- C. functional isomers
D. metamers

Answer: A

28. Which of the following statements is correct?

A. Structural isomers have similar physical and chemical properties.

B. Alcohols and ethers form functional pairs.

C. The compound having formula $C_4H_{11}N$ has two metamers.

D. Tautomerism and resonance are two different names for the same

phenomenon.

Answer: B

29. Write the structures of three ethers with molecular formula $C_4H_{10}O$.

A. 1 B. 2 C. 3

Answer: C

D. 4

Watch Video Solution

30. Propanal is the functional isomer of

A. propane

B. propan-1-ol

C. propan-2-ol

D. propan-2-one.

Answer: D

31. In tautomerism, the two tautomeric forms continuously change into each other through the oscillation of

A. a proton

B. π -electrons

C. a proton and π -electrons

D. none of the above.

Answer: C

32. The enolic form of $CH_3 - C - CH_2COOC_2H_5$ is

$$A. CH_{2} = \overset{OH}{C} - CH_{2}COOC_{2}H_{5}$$

$$B. CH_{3} - \overset{OH}{C} = CHCOOC_{2}H_{5}$$

$$C. CH_{3} - \overset{OH}{C} - CH = \overset{OH}{C} - COOC_{2}H_{5}$$

D. none of the above.

Answer: B

D Watch Video Solution

33. How many chain isomers are possible with the formula $C_7 H_{16}$?

A. 5 B. 7 C. 9 D. 18

Answer: C

34. The isomerism shown by butan-1-amine and 2-methylpropan l-amine is

A. chain isomerism

B. position isomerism

C. functional isomerism

D. metamerism

Answer: A

Watch Video Solution

35. The number of conformations exhibited by ethane is

A. 1

B. 2

C. 3

D. infinite

Answer: D

36. Which of the following statements is correct?

- A. Ethane can have only three conformations.
- B. In staggered conformation, the hydrogen atoms of the nearer

methyl group just eclipse the hydrogen atoms of the farther methyl

group.

- C. The staggered conformer is more stable than the eclipsed conformer.
- D. The staggered and eclipsed conformers of ethane can be isolated in

the pure form.

Answer: C

37. At room temperature, the staggered and eclipsed conformers of ethane continuously change into each other. This is because

A. they are very unstable

- B. C-C bond is flexible
- C. the energy barrier between the two is not large enough to prevent

rotation

D. C atom in ethane has a tetrahedral nature.

Answer: C

Watch Video Solution

38. Which of the following letters possesses chirality ?

A

н				
J				
	A. A			
	B. X			
	СН			
	C.11			
	D. J			

Answer: D

Watch Video Solution

39. A compound of the type $C_{abd}-C_{abd}$

A. does not show optical isomerism

B. has two optically active and one meso isomers

C. has two meso and one optically active isomers

D. has four optically active isomers.

Answer: B

40. The compound represented by the following structure

COOH | H - C - OH | H - C - OH | COOH

is optically inactive because

A. it contains no asymmetric carbon atom

B. it contains two asymmetric carbon atoms and the molecule is chiral

C. it has no element of symmetry

D. it is an achiral molecule due to the presence of a plane of symmetry.

Answer: D

41. Which of the following compounds does possess one or more asymmetric carbon atoms?

A. Propan-1-ol

B. Butan-2-ol

C. Acetic acid

D. Succinic acid

Answer: B

Watch Video Solution

42. The d- and l- forms of an optically active compound are called

A. enantiomers

B. diastereoisomers

C. anomers

D. epimers

Answer: A

43. Lactic acid (2-hydroxypropanoic acid) is an optically active compound.

It can be made optically inactive by

A. replacing its OH group by H

B. replacing its OH group by CI

C. replacing its OH group by Br

D. none of the above.

Answer: A

44. When pyruvic acid $\begin{pmatrix} O \\ || \\ CH_3 - C \\ - COOH \end{pmatrix}$ is reduced under normal

conditions

A. d-lactic acid is obtained

B. l-lactic acid is obtained

C. dl-lactic acid is obtained

D. the process is called asymmetric synthesis.

Answer: C

Watch Video Solution

45. Which of the following types of compounds is unable to exhibit geometrical isomerism ?

A. abc = Cab

B. axC = Cay

C. aaC = Cab

D. none of these

Answer: C

Watch Video Solution

46. Write the systematic IUPAC names of the following compounds :

 $C_6H_5 - CH = CH - COOH$

A. geometrical isomerism

B. optical isomerism

C. both

D. none of the above.

Answer: A

47. Which of the following compounds cannot exist in cis and trans forms?

A. But-2-ene

B. But-2-ene-1, 4-dioic acid

C. 2-bromo-3-methylbut-2-ene

D. But-2-enoic acid

Answer: C

Watch Video Solution

48. Which of the following statements is not correct?

A. Geometrical isomers possess different physical properties.

B. Geometrical isomers can be separated by fractional distillation.

C. cis-isomers are more stable than trans-isomers.

D. The chemical properties of geometrical isomers may or may not be

similar.

Answer: C

D Watch Video Solution

49. Consider the following conformations. Which of the following statements is correct?

A. Structure I represents staggered conformation.

B. Structure II represents a skew conformation

C. Structure III represents eclipsed conformation.

D. I, II and III are the conformations of propane.

Answer: A

A. geometrical isomerism

- B. optical isomerism
- C. geometrical and optical isomerism
- D. tautomerism

Answer: B

51. Which of the following has an asymmetric carbon atom ?

(a)
$$CH_3 - CH_2 - CH_2Br$$

(b) $CH_3 - \overset{H}{\overset{|}{C}} - \overset{H}{C} H - CH_3$
 $\overset{Br}{\overset{Br}{CH_3}} Br$
(c) $CH_3 - cH_2 - \overset{L}{\overset{C}{CH_3}} - CH_3$
 $\overset{CH_3}{\overset{CH_3}{CH_3}}$
(d) $CH_3 - \overset{L}{\overset{C}{C}} - CH_2 - CH_2 - CH_3$

$$\begin{array}{l} \mathsf{A}.\,CH_3 - CH_2 - CH_2Br \\ \mathsf{B}.\,CH_3 - \overset{H}{\overset{|}{C}} - \overset{H}{C} H - CH_3 \\ \overset{H}{\overset{Br}{}} \overset{H}{\overset{CH_3}{}} \\ \mathsf{C}.\,CH_3 - cH_2 - \overset{H}{\overset{C}{}} - CH_3 \\ \overset{H}{\overset{CH_3}{}} \\ \mathsf{D}.\,CH_3 - \overset{H}{\overset{C}{}} - CH_2 - CH_2 - CH_2 - CH_3 \end{array}$$

Answer: **B**

52. The compound which does not exhibit optical isomerism is

A. $CH_3CHBrCOOH$

 $\mathsf{B.}\, CH_2 ClCH_2 COOH$

C. $CH_3CHOHCOOC_2H_5$

D. $CH_3CHOHCOOH$

Answer: B

53. The correct statements about the compounds A, B and C is

A. A and B are identical

B. A and B are diastereoisomers

C. A and C are enantiomers

D. A and B are enantiomers.

Answer: A

54. How many optically active stereoisomers are possible for butane-2, 3-

diol		
1		
2		
3		
4		
A. 1		
B. 2		
C. 3		
D. 4		

Answer: B

55. During debromination of meso-dibromobutane, the major compound

formed is

n-butane

but-1-ene

cis-but-2-ene

trans-but-2-ene

A. n-butane

B. but-1-ene

C. cis-but-2-ene

D. trans-but-2-ene

Answer: D

Watch Video Solution

56. Which one of the following compounds will show geometrical isomerism ?

A. But-2-ene

B. Propene

C. Ethene

D. 2-methylbut-2-ene

Answer: A

Watch Video Solution

57. Out of the following, the alkene that exhibits optical isomerism is

3-methyl-2-pentene

4-methyl-1-pentene

3-methyl-1-pentene

2-methyl-2-pentene

A. 3-methyl-2-pentene

B. 4-methyl-1-pentene

C. 3-methyl-1-pentene

D. 2-methyl-2-pentene

Answer: C

58. Identify the compound that exhibits tautomerism:

2-butene

lactic acid

2-pentanone

phenol

A. 2-butene

B. lactic acid

C. 2-pentanone

D. phenol

Answer: D

59. How many chiral compounds are possible on monochlorination of 2-

methyl butane?

A. 8 B. 2 C. 4 D. 6

Answer: B

60. Which branched chain isomer of the hydrocarbon with molecular mass 72u gives only one isomer of mono substituted alkyl halide ?

A. Tertiary butyl chloride

B. Neopentane

C. Isohexane

D. Neohexane

Answer: B

61. Which of the following acids does not exhibit optical isomerism?

A. Maleic acid

B. α -amino acids

C. Lactic acid

D. Tartaric acid

Answer: A

62. Lassaigne's test is used in the qualitative analysis to detect

A. nitrogen

B. sulphur

C. chlorine

D. all of these.

Answer: D

Watch Video Solution

63. A compound which does not give positive test for nitrogen is:

urea

azobenzene

glycine

phenyl hydrazine.

A. urea

B. azobenzene

C. glycine

D. phenyl hydrazine.

Answer: B

64. For detection of sulphur in an organic compound, sodium nitroprusside is added to the sodium extract. A violet colour is obtained which is due to the formation of

- A. $Na_4 [Fe(CN)_5 NOS]$
- B. $Na_3Fe(CN)_6$
- C. $Fe(CNS)_3$
- $\mathrm{D.}\, Na \big[Fe(CN)_5 NS\big]$

Answer: A

65. In sodium fusion test of organic compounds, the nitrogen of an organic compound is converted to

A. sodamide

B. sodium cyanide

C. sodium nitrite

D. sodium nitrate.

Answer: B

Watch Video Solution

66. The Beilstein test for organic compounds is used to detect

A. carbon

B. halogens

C. nitrogen

D. sulphur

Answer: B

67. In the Duma's method for estimating nitrogen in an organic compound, the gas finally collected is

A. N_2

 $\mathsf{B.}\,NO$

 $\mathsf{C}.NH_3$

D. None of these

Answer: A

Watch Video Solution

68. In Kjeldahl's method, nitrogen present is estimated as

A. N_2

 $\mathsf{B.}\,NH_3$

 $\mathsf{C}.NO_2$

D. none of these

Answer: B

Watch Video Solution

69. Carbon and hydrogen are estimated by

A. Liebig's method

B. Carius method

C. Duma's method

D. none of these.

Answer: A

70. A compound containing 80% C and 20% H is likely to be:

 $C_{6}H_{6}$ $C_{2}H_{6}$ $C_{2}H_{4}$ $C_{2}H_{2}$ A. $C_{6}H_{6}$ B. $C_{2}H_{6}$ C. $C_{2}H_{4}$

 $\mathsf{D.}\, C_2 H_2$

Answer: B

71. An organic compound is found to contain C - 40%. 0 = 53.34% and H =

6.66%. Its empirical formula is

A. CHO

B. CH_2O

 $\mathsf{C}. C_2 H_2 O$

 $\mathsf{D.}\, CH_4O_2$

Answer: B

Watch Video Solution

72. An organic compound has an empirical formula CH_2O . Its vapour density is 45. The molecular formula of the compound is

A. CH_2O

 $\mathrm{B.}\, C_2 H_5 O$

 $\operatorname{C.} C_3 H_6 O_3$

 $\mathsf{D.}\, C_2 H_2$

Answer: C

73. The empirical formula of a compound is CH_2 . One mole of this compound has a mass of 42 grams. Its molecular formula is

A. C_3H_6

 $\mathsf{B.}\, C_2 H_6$

 $\mathsf{C}.CH_2$

 $\mathsf{D.}\, C_2 H_2$

Answer: A

Watch Video Solution

74. The concentration of C = 85.45%, and H = 14.44% is not obeyed by the

formula

A. CH_2

 $\mathsf{B.}\, C_2 H_4$

 $\operatorname{C.} C_2 H_6$

D. C_4H_8

Answer: C

Watch Video Solution

75. If two compounds have the same empirical formula but different molecular formula, they must have

A. different percentage composition

B. same viscosity

C. different molecular masses

D. same vapour density.

Answer: C

76. 0.759 g of a silver salt of a dibasic organic acid on ignition gave 0.463

g of silver. The molecular mass of the acid is

A. 70

B. 140

C. 108

D. 216

Answer: B

Watch Video Solution

77. 0.400 g of chloroplatinate salt of a monoacid base on ignition gave 0.125 g of platinum. Find the molecular mass of the base.

A. 104

B. 107

C. 154

D. 214

Answer: B

Watch Video Solution

78. 0.500 g of the silver salt of an organic dibasic acid on ignition gives

0.325 g of pure silver. Find the molecular mass of the acid.

A. 59.15

 $B.\,117.9$

C. 119.6

D. 189.8

Answer: A
79. In a Victor Meyer's determination of molecular mass, 0.1015 g of an organic substance displaced 26.16 mL of air at S.T.P. The molecular mass of the substance is

A. 22.4

B.44.8

C.76.4

D. 86.9

Answer: D

Watch Video Solution

80. 0.29 g of an organic compound on combustion gave 0.66 g of CO_2 and 0.27 g of H_2O . The percentage of carbon and hydrogen in the given compound respectively are

A. 10.3, 62.1

B. 44.6, 10.7

C. 62.1, 10.3

D. 10.7, 44.6

Answer: C

Watch Video Solution

81. The blue compound formed in the positive test for nitrogen with Lassaigne solution of an organic compound is

- A. $Fe_4 \big[Fe(CN)_6\big]_3$
- $\mathsf{B.}\, Na_3\big[Fe(CN)_6\big]$
- $\mathsf{C}.\,Fe(CN)_3$
- $\mathsf{D.} \, Na_{4} \big[Fe(CN)_{5}NOS \big]$

Answer: A

82. The ammonia evolved from the treatment of 0.30 g of an organic compound for the estimation of nitrogen was passed in 100 mL of 0.1 M sulphuric acid. The excess of acid required 20 mL of 0.5 M sodium hydroxide solution for complete neutralisation. The organic compound is: acetamide

benzamide

urea

thiourea

A. acetamide

B. benzamide

C. urea

D. thiourea

Answer: C

83. An organic compound having molecular mass 60 is found to contain C = 20%, H = 6.67% and N = 46.67% while rest is oxygen. On heating it gives NH3 along with a solid residue. The solid residue gives violet colour with alkaline copper sulphate solution. The compound is?

A. $CH_3CH_2CONH_2$

 $\mathsf{B.}\,(NH_2)_2CO$

 $\mathsf{C.}\,CH_3CONH_2$

D. CH_3NCO

Answer: B

Watch Video Solution

84. The blue compound formed in the positive test for nitrogen with Lassaigne solution of an organic compound is

A. $Fe_4 \big[Fe(CN)_6\big]_3$

B. $Na_3[Fe(CN)_6]$

 $\mathsf{C}. Fe(CN)_3$

D. $Na_4[Fe(CN)_5NOS]$

Answer: A

Watch Video Solution

85. 29.5 mg of an organic compound containing nitrogen was digested according to Kjeldahl's method and the evolved ammonia was absorbed in 20 mL of 0.1 M HCl solution. The excess of the acid required 15 mL of 0.1 M NaOH solution for complete neutralization. The percentage of nitrogen in the compounds is

A. 59.0

B.47.4

C. 23.7

D. 29.5

Answer: C

Watch Video Solution

86. In Dumas' method for estimation of nitrogen, 0.3g of an organic compound gave 50mL of nitrogen collected at 300K temperature and 715mm pressure. Calculate the percentage composition of nitrogen in the compound. (Aqueous tension at 300K=15 mm)

A. 16.45

 $\mathsf{B}.\,17.45$

C. 14.45

 $D.\,15.45$

Answer: A

87. For testing halogens in an organic compound with $AgNO_3$ solution, sodium extract (Lassaigne's test) is acidified with dilute HNO_3 . What will happen if a student acidifies the extract with dilute H_2SO_4 in place of dilute HNO_3 ?

A. helps in the precipitation of AgCI

B. increases the solubility product of AgCI

C. increases the concentration of NO_3^- ions

D. decomposes Na_2S and NaCN, if formed

Answer: D

Watch Video Solution

88. In the Kjeldahl's method for estimation of nitrogen present in a soil sample, ammonia evolved from 0.75 g of sample neutralised 10 mL of 1 M H2SO4. The percentage of nitrogen in the soil is

A. 37.33

 $B.\,45.33$

C.35.33

D. 43.33

Answer: A

89. For the estimation of nitrogen 1.4g of organic compound was diagest by Kjedahl method an the evolved ammonia was absorbed in 60mL of $\frac{M}{10}$ sulphuric acid. The unreacted acid required 20 ml of $\frac{M}{10}$ sodium hydroxide for complete neutralization. The percentage of nitrogen in the compound is :

A. 6~%

 $\mathsf{B}.\,10\,\%$

 $\mathsf{C.}\,3\,\%$

D. 5 %

Answer: B

90. Which of the following ions is most stable ?

A. $CH_3CH_2\overset{+}{C}H_2$

- $\mathsf{B.} {CH_3} \overset{+}{C} H C H_2 C H_3$
- $\mathsf{C.}\left(CH_3\right)_3C^{\,+}$
- $\mathsf{D}.\left(CH_3\right)_3 \overset{+}{C}. \ CH_2$

Answer: C

91. The number of electrons present in the valence shell of carbon bearing negative charge in a carbanion is

A. 4 B. 6 C. 7 D. 8

Answer: D

Watch Video Solution

92. The compound which gives the most stable carbonium ion on dehydration is

A.
$$CH_3 - \mathop{C}\limits_{\substack{|\ CH_3\\CH_3\\CH_3}}H - CH_2OH$$

B. $CH_3 - \mathop{C}\limits_{\substack{|\ CH_3\\CH_3}}H - OH$

 $\mathsf{C.}\,CH_3CH_2CH_2CH_2OH$

D.
$$CH_3 - \mathop{C}\limits_{\substack{\mid\\ OH}} H - CH_2 - CH_3$$

Answer: B

Watch Video Solution

93. In a free radical, the carbon atom carrying unpaired electron is

A. sp hybridised

B. sp^2 hybridised

C. sp^3 hybridised

D. dsp^2 hybridised

Answer: B

94. Nitration of benzene is

- A. nucleophilic substitution
- B. nucleophilic addition
- C. electrophilic substitution
- D. free radical substitution.

Answer: C

Watch Video Solution

95. The reaction intermediates involved in the addition of HBr to propene

in the presence of an organic peroxide are

- (a) free radicals
- (b)carbocations
- (c)carbanions
- (d)carbenes

A. free radicals

B. carbocations

C. carbanions

D. carbenes

Answer: A

Watch Video Solution

96. The shape of carbanion $\left[CH_3\right]^-$ is:

linear

bent

pyramidal

tetrahedral

A. linear

B. bent

C. pyramidal

D. tetrahedral

Answer: C

97. Which of the following is an electrophile ?

 NH_3

 $AlCl_3$

 OH^{-}

 $CH_3 - O - CH_3$

A. NH_3

B. $AlCl_3$

 $\mathsf{C}.\,OH^{\,-}$

D. $CH_3 - O - CH_3$

Answer: B

98. Heterolytic fission of C—Cl bond produces

two free radicals

two carbonium ions

two carbanions

one cation and one anion.

A. two free radicals

B. two carbonium ions

C. two carbanions

D. one cation and one anion.

Answer: D

99. Which one of the following is the strongest acid ?

A. CH_3COOH

B. CCl_3COOH

C. $CHCl_2COOH$

 $\mathsf{D.}\, CH_2 ClCOOH$

Answer: B

Watch Video Solution

100. The most stable free radical is

A. $\dot{C}H_3$

B. CH_3CH_2

 $\mathsf{C.} (CH_3)_2 \dot{C} H$

 $\mathsf{D}.\,(CH_3)_3 \overset{\cdot}{C}$

Answer: D

101. The formation of cyanohydrin from a ketone is an example of nucleophilic substitution electrophilic substitution electrophilic addition nucleophilic addition.

A. nucleophilic substitution

B. electrophilic substitution

C. electrophilic addition

D. nucleophilic addition.

Answer: D

102. Which of the following alkyl halides is hydrolysed by S_{N^1} mechanism ?

 CH_3Cl

 CH_3CH_2Cl

 $CH_3CH_2CH_2Cl$

 $(CH_3)_3 CCl$

A. CH_3Cl

 $\mathsf{B.}\, CH_3 CH_2 Cl$

 $\mathsf{C.}\,CH_3CH_2CH_2Cl$

 $D. (CH_3)_3 CCl$

Answer: D

Watch Video Solution

103. Which of the following does contain three pairs of electrons ?

A. Carbocation

B. Carbanion

C. Free radical

D. None of these.

Answer: A

Watch Video Solution

104. Amongst the following, which are true for S_{N^2} reaction ? (i) The rate of reaction is independent of the concentration of the nucleophile. (ii) The nucleophile attacks the carbon atom on the side of the molecule opposite to the group being displaced. (iii) The reaction proceeds with simultaneous bond formation and bond rupture.

A. (i), (ii)

B. (i), (iii)

C. (i), (ii), (iii)

D. (ii), (iii)

Answer: D

105. Nucleophiles are ______ while electrophiles are ______ .

A. Lewis acids

B. Lewis bases

C. amphoteric

D. none of these.

Answer: B

Watch Video Solution

106. The + I-effect is shown by

A. CH_3

B. - OH

 $\mathsf{C}.\,F$

 $\mathsf{D.}-C_6H_5$

Answer: A

107. Wilkinson's catalyst is

A. Ni

- $\mathsf{B.}\left[\left(C_{6}H_{5}\right)_{3}P\right]_{3}RhCl$
- C. $LiAlH_4$

D. Fe_2O_3

Answer: B

108. The hardness of water is estimated by

(a)conductivity method

(b)EDTA method

(c)titrimetric method

(d)distillation method

A. conductivity method

B. EDTA method

C. titrimetric method

D. distillation method

Answer: B

Watch Video Solution

109. Which of the following is an organometallic compound ?

A. Lithium methoxide

B. Lithium acetate

C. Lithium dimethylamide

D. Methyllithium.

Answer: D

Watch Video Solution

110. Which of the following is an organometallic compound ?

A. $Ti(C_2H_5)_4$

B. $Ti(OC_2H_5)$

 $C.Ti(OCOCH_3)_4$

 $\mathsf{D}.\,Ti(OC_6H_5)_4.$

Answer: A

111. In the compound, lithium tetrahydroaluminate, the ligand is

A. $H^{\,+}$

 $\mathsf{B}.\,H$

C. $H^{\,-}$

D. None of these

Answer: C

Watch Video Solution

112. Which of the following ligands does form a chelate ?

A. Acetate

B. Oxalate

C. Cyanide

D. Ammonia

Answer: B

Watch Video Solution

113. The geometry of $Ni(CO)_4$ and $Ni(PPh_3)Cl_2$ are

A. both square planar

B. tetrahedral and square planar respectively

C. both tetrahedral

D. square planar and tetrahedral respectively.

Answer: C

Watch Video Solution

114. Ferrocene is described by the formula

A.
$$\left[Fe(CN)_6
ight]^{3-}$$

- $\mathsf{B.}\left[Fe(CN)_{6}\right]^{4-}$
- $\mathsf{C}.\left[Fe(CO)_5\right]$
- D. $\left[Fe(C_5H_5)_2\right]$

Answer: D

Watch Video Solution

115. Which of the following species is a carbene?

- A. : CH_{3}^{-}
- $B.: CCl_2$
- $\mathsf{C}.\,CH_2=C=O$
- D. $R \dot{C}H R$

Answer: B

116. In a triplet carbene, the central carbon atom

A. is sp^2 hybridised

B. contains a lone pair of electrons

C. forms one o and one bonds with the groups attached

D. contains two unpaired electrons.

Answer: D

Watch Video Solution

117. Which of the following species does act as an electrophile ?

A. H_2O

 $\mathsf{B}.\,CH_3-O-CH_3$

C. $\dot{C}H_3$

D. CH_3NH_2

Answer: C

118. The reaction, $RX + OH^-
ightarrow R - OH + X^-$, is

A. an electrophilic substitution reaction

B. a nucleophilic substitution reaction

C. a free radical substitution reaction

D. an elimination reaction.

Answer: B

Watch Video Solution

119. The reaction $CH_3Br+OH^-
ightarrow CH_3OH+Br^-$ follows

A. S_{N^1} mechanism

B. S_{N^2} mechanism

C. either of the above two

D. none of the above two

Answer: B

Watch Video Solution

120. An S_{N^2} reaction occurs through the formation of a

A. carbocation

B. carbanion

C. free radical

D. transition state.

Answer: D

121. The reaction, $CH_4+Cl_2 \stackrel{
m hv}{\longrightarrow}, CH_3Cl+HCl, \,$ occurs through

A. electrophilic substitution

B. nucleophilic substitution

C. free radical substitution

D. none of the above.

Answer: C

Watch Video Solution

122. Which of the following acts as a nucleophile?

A. CH_3NH_2

 $\mathsf{B.} \overset{+}{C} H_3$

 $\mathsf{C.} AlCl_3$

D. CH_3MgBr .

Answer: A

123. Which of the following has the highest nucleophilicity ?
F^{-}
OH^{-}
CH_3^{-}
NH_2^{-}
A. F^{-}
B. OH^{-}
C. CH_3^{-}
D. NH_2^-

Answer: C

124. The order of reactivities of the following alkyl halides for an S_{N^2} reaction is:

- RF > RCI > RBr > Rl
- RF > RBr > RCl > Rl
- RCl > RBr > rF > Rl
- Rl > RBr > RF
 - A. RF > RCI > RBr > Rl
 - $\mathsf{B}.\,RF > RBr > RCl > Rl$
 - C. RCl > RBr > rF > Rl
 - $\mathsf{D}.\,Rl > RBr > RF$

Answer: D

125. Following reaction,

 $(CH_3)_3 CBr + H_2 O
ightarrow (CH_3)_3 COH + HBr$ is an example of

elimination reaction

free radical substitution

nucleophilic substitution

electrophilic substitution.

A. elimination reaction

B. free radical substitution

C. nucleophilic substitution

D. electrophilic substitution.

Answer: C

126. Due to the presence of an unpaired electron, free radicals are

A. cations

B. anions

C. chemically inactive

D. chemically reactive.

Answer: D

127. The organic chloro compound, which shows complete stereochemical inversion during a S_{N^2} reaction is

A. $(C_2H_5)_2CHCl$

 $\mathsf{B.} (CH_3)_3 CCl$

 $C. (CH_3)_2 CHCl$

D. CH_3Cl

Answer: D

128. Which one is a nucleophilic substitution reaction among the following ?

A.
$$RCHO+R$$
 ' $Mgx
ightarrow R- \mathop{C}_{ert} H-R$ $\stackrel{ert}{_{OH}}$

Β.

 $CH_3-CH_2-oevrset(CH_3) \overset{|}{C} H-CH_2Br+NH_3
ightarrow CH_3-CH_2$ C. $CH_3CHO+HCN
ightarrow CH_3CH(OH)CN$

$$ext{D.} \, CH_3 - CH = CH_2 + H_2 O \stackrel{H^+}{\longrightarrow} CH_3 - egin{array}{c} CH_3 - CH_- CH_3 \ dots \ OH \end{array}$$

Answer: B

Watch Video Solution

129. The order of stability of the following carbocations

$$CH_2 = \mathop{C}\limits_{(I)}^{+} H - CH_2, CH_3 - \mathop{C}\limits_{(II)} H_2 - \mathop{C}\limits_{H_2}^{+}$$

A. III gt II gt I

B. II gt III gt I

C. I gt II gt III

D. III gt I gt II

Answer: D

Watch Video Solution

130. The correct statement regarding electrophile is
A. Electrophile is a negatively charged species and can form a bond by

accepting a pair of electrons from a nucleophile.

- B. Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from another electrophile.
- C. Electrophiles are generally neutral species and can form a bond by

accepting a pair of electrons from a nucleophile.

D. Electrophile can be either neutral or positively charged species and

can form a bond by accepting a pair of electrons from a nucleophile.

Answer: D

131. The most suitable method of separation of 1:1 mixture of ortho and para-nitrophenols is :

sublimation

chromatography

crystallisation

steam distillation

A. sublimation

B. chromatography

C. crystallisation

D. steam distillation

Answer: D

132. Identify A and predict the type of reaction

Answer: A

133. The IUPAC name of the compound

- A. 3-keto-2-methylhex-4-enal
- B. 5-formylhex-2-en-3-one
- C. 5-methyl-4-oxohex-2-en-5-al
- D. 3-keto-2-methylhex-5-enal

Answer: A

134. Which of the following is correct with respect to -|-effect of the

substituents? (R = alkyl)

A. $-NH_2 < -OR < -F$

- $\mathsf{B.} NR_2 < -OR < -F$
- $\mathsf{C.}-NH_2 > \ -OR < \ -F$

$$\mathsf{D}.-NR_2>-OR>-F$$

Answer: A

A.

135. Which of the following carbocations is expected to be most stable?

Β.

Answer: C

D.

136. Which of the following compounds will be suitable for Kjeldahl's method for nitrogen estimation?

Answer: B

D.

137. The number of sigma (σ) and pi (π) bonds in pent-2-en-4-yne is :

- A. 11 σ bonds and 2 π bonds
- B. 13 σ bonds and no π bonds
- C. 10 σ bonds and 3 π bonds
- D. 8 σ bonds and 5 π bonds.

Answer: C

138. The IUPAC name for the following compound is :

- A. 3, 5-dimethyl-4-propylhept-1-en-6-yne
- B. 3-methyl-4-(3-methylprop-1-enyl)-1-heptyne
- C. 3-methyl-4-(1-methylprop-2-enyl)-1-heptene
- D. 3, 5-dimethyl-4-propylhept-6-en-1-yne.

Answer: A

139. Increasing order of reactivity of the following compounds for S_{N^1} substitution is :

Answer: D

140. Which of the following is potential energy diagram for $S_N 1$ reaction?

Answer: B

141. The correct IUPAC name of the following compound is :

- A. 5-chloro-4-methyl-1-nitrobenzene
- B. 2-chloro-1-methyl-4-nitrobenzene
- C. 2-methyl-5-nitro-1-chlorobenzene
- D. 3-chloro-4-methyl-1-nitrobenzene.

Answer: B

142. The *IUPAC* name of the following compound is:

A. 4,4-dimethyl-3-hydroxybutanoic acid

B. 2-methyl-3-hydroxypentan-5-oic acid

C. 4-methyl-3-hydroxypentanoic acid

D. 3-hydroxy-4-methylpentanoic acid.

Answer: D

True Or False Type Questions

5. The behaviour of alicyclic compounds is similar to those of aliphatic

compounds.

carbon atoms.

Watch Video Solution

7. Propane forms only one alkyl group.

8. The IUPAC name of the compound $CH_3 - C H - CH_3$ is 2- C_2H_5

ethylpropane.

9. Para disubstituted derivatives of benzene are 1, 4-derivatives.

Vatch Video Solution
10. The principal functional group is indicated by adding a specific suffix
to the word root.
Watch Video Solution
11. Presence of double bond in a compound is indicated by adding a prefix
to the word root.
Watch Video Solution

12. $-NH_2$ group is placed higher as compared to -OH group in the

seniority table for functional groups.

18. Which of the following compounds will exhibit cis-trans (geometrical)

isomerism?

Watch Video Solution

Watch Video Solution

19. Explain why cis-isomer is less stable as compared to trans isomer

Watch Video Solution

20. The letter P is chiral in nature.

21. The stereoisomers which are superimposable mirror images of each

other are called enantiomers.

25. Enantiomers may possess different rates of reactions with other

optically active compounds.

33. Why does vanadium pentoxide acts as a catalyst?

Watch Video Solution		

34. One gram equivalent of a weak acid is unable to completely neutralise

one gram equivalent of a strong base.

Watch Video Solution

35. Phosphorus is estimated as $Mg_3(PO_4)_2$ in an organic compound.

Yes/No?

Watch Video Solution

36. Victor Meyer's method for determination of molecular mass is applicable only to volatile organic compounds.

37. How is the molecular formula of a compound related to its empirical

formula ?

Watch Video Solution

38. Chloroplatinate salts are very stable and do not decompose on heating.

Watch Video Solution

39. C_6H_5 -group causes - I-effect when present in a saturated chain of carbon atoms.

carbon acoms.

40. 1° alkyl groups cause greater + l-effect as compared to 2° alkyl groups. True/False.

41. Electromeric effect is a effect and involves transfer of electrons of a multiple bond.

Watch Video Solution

Watch Video Solution

42. Mesomeric effect is a temporary effect. True or False.

43. Mesomeric effect involves delocalisation of pi-electrons of all the double bonds present in a conjugated system.

44. Hyperconjugation effect comes into existence when a C-H bond is present at Beta-position to a double bond.

48. What is the state of hybridisation of the central carbon in a

carbocation ?

2. Organic compounds are	in nature and possess	melting and
boiling points.		

12. When two or more compounds having the same molecular formula differ in physical or chemical properties, the phenomenon is known as

and such compounds are called
Watch Video Solution
13. Chain isomerism is also referred to as isomerism.
Watch Video Solution
14. Butan-1-ol and 2-methylpropan-1-ol differ in theirskeletons and show isomerism.
Watch Video Solution
15. Pentane has chain isomers.
Watch Video Solution

16. The ring-chain isomers possible with the molecular formula C_3H_6 are

..... and

Watch Video Solution

17. In tautomerism, the two tautomeric forms continuously change into each other through the oscillation of

Watch Video Solution

18. Maleic acid and fumaric acid are isomers.

Watch Video Solution

19. The main cause of geometrical isomerism is the ... carbon atoms about

a bond.

20. The geometrical isomers have but not chemical properties.

Watch Video Solution
21. Plane polarised light is obtained by passing the ordinary light through
Watch Video Solution
22. Molecules whose mirror image is non-superimposable over them are
known as chiral. Which of the following molecules is chiral in nature?

23. When is a molecule said to be dissymmetric ? Give a brief account of

the elements of symmetry.

24. The process of separation of a recemic mixture into d- and 1- components is called

Watch Video Solution

25. The net optical rotation of meso-tartaric acid is due to compensation.

Watch Video Solution

26. Prussian blue is

27. When an organic compound contains a halogen along with N and S,

halogen can be tested only after boiling the sodium extract with

35. Electromeric effect is a effect and involves transfer of

electrons of a multiple bond.

36. Among -OH and > C = 0, the group causing + M-effect is

group.

Watch Video Solution

37. Why is a 3 free radical more stable as compared to 1° and 2° free

radicals?

38. The central carbon in a carbocation is hybridised.
39. What are carbocations ? Discuss their orbital structure and explain the relative order of the stability of various types of carbocations.

Watch Video Solution
40. In a singlet carbene, the lone pair of electrons is present in ahybridised orbital.
Vatch Video Solution
41. Free radicals and carbenes act as philic reagents.

Watch Video Solution

42. Nucleophiles are Lewis and possess pair of electrons.

1. Assertion: - 3° carbocations are more stable than 1° and 2° carbocations.

Reason :- The+I effect of alkyl groups decreases the magnitude of positive charge to the maximum possible extent in a 3° carbocation

A. If both Assertion and Reason are CORRECT and Reason is the

CORRECT explanation of the Assertion.

B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

- C. If Assertion is CORRECT but Reason is INCORRECT.
- D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: A

2. Assertion: -The addition of HCl to unsymmetrical alkenes in the presence of organic peroxides takes place against Markownikoff's rule. Reason :- 2° free radicals are more stable than 1° free radicals.

A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.

B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

C. If Assertion is CORRECT but Reason is INCORRECT.

D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: D

Watch Video Solution

3. Assertion: -But-1-ene on reaction with HBr in the presence of a peroxide

produces 1-bromobutane.

Reason :-It involves the formation of a primary radical.

A. If both Assertion and Reason are CORRECT and Reason is the

CORRECT explanation of the Assertion.

B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

C. If Assertion is CORRECT but Reason is INCORRECT.

D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: C

Watch Video Solution

4. Assertion : Addition of bromine to trans-but-2-ene yields meso-2,3dibromobutane.

Reason : Bromine addition to an alkene is a nucleophilic addition

(a) If both Assertion and Reason are CORRECT and Reason is the CORRECT

explanation of the Assertion.

(b) If both Assertion and Reason are CORRECT but Reason is not the CORRECT explanation of the Assertion.

(c) I Assertion is CORRECT but Reason is INCORRECT.

(d)I Assertion is CORRECT but Reason is INCORRECT.

A. If both Assertion and Reason are CORRECT and Reason is the

CORRECT explanation of the Assertion.

B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

C. If Assertion is CORRECT but Reason is INCORRECT.

D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: B

Watch Video Solution

5. Assertion: - CH_3 acts as an electrophile.

Reason :-The carbon atom in $\dot{CH_3}$ is in a state of sp^2 hybridisation.

A. If both Assertion and Reason are CORRECT and Reason is the

CORRECT explanation of the Assertion.

B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

C. If Assertion is CORRECT but Reason is INCORRECT.

D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: B

6. Assertion: -

No and do not represent the resonance structures.

Reason :-The two structures involve a change in the position of atoms,

A. If both Assertion and Reason are CORRECT and Reason is the

CORRECT explanation of the Assertion.

B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

C. If Assertion is CORRECT but Reason is INCORRECT.

D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: A

7. Assertion: - In a fractionating column, the processes of evaporation and condensation occur automatically several times.

Reason :-A fractionating column is provided with obstructions to the passage of vapours upwards and to the liquid downwards.

- A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
- B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

C. If Assertion is CORRECT but Reason is INCORRECT.

D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: B

8. Assertion: - The mixture of steam with an organic liquid boils at a temperature much lower than the boiling points of organic liquid and water.

Reason :- The mixture of steam and an organic liquid is completely immiscible. For such a system, the total vapour pressure is equal to the sum of the individual vapour pressure of water and the liquid.

- A. If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
- B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

C. If Assertion is CORRECT but Reason is INCORRECT.

D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: A

9. Assertion: - Higher the R_f value of a substance, greater is the time taken by it for elution.

Reason :- The time taken by a substance for elution is greater when it is adsorbed more strongly on the adsorbent.

A. If both Assertion and Reason are CORRECT and Reason is the

CORRECT explanation of the Assertion.

B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

C. If Assertion is CORRECT but Reason is INCORRECT.

D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: D

10. Explain why :

A blood red colouration is obtained on addition of $FeCl_3$ to Lassaigne's solution when the compound contains both N and S.

A. If both Assertion and Reason are CORRECT and Reason is the

CORRECT explanation of the Assertion.

B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

C. If Assertion is CORRECT but Reason is INCORRECT.

D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: C

Watch Video Solution

11. Assertion: - In mass spectrometry, the molecular ion peak gives the

molecular mass of the compound.

Reason :-The molecular mass of the molecular ion is the same as that of the compound taken.

A. If both Assertion and Reason are CORRECT and Reason is the

CORRECT explanation of the Assertion.

B. If both Assertion and Reason are CORRECT but Reason is not the

CORRECT explanation of the Assertion.

C. If Assertion is CORRECT but Reason is INCORRECT.

D. If Assertion is INCORRECT but Reason is CORRECT.

Answer: A

Watch Video Solution

Ncert Text Book Exercises With Hints And Solutions

1. What are hybridisation states of each carbon atom in the following

compounds?

4. Give the I.U.P.A.C. names of the following compounds:

5. Give the I.U.P.A.C. names of the following compounds:

8. Give the I.U.P.A.C. names of the following compounds:

Watch Video Solution

9. Give the I.U.P.A.C. names of the following compounds:

 Cl_2CHCH_2OH

10. Which of the following represents the correct I.U.P.A.C. name for the

compounds concerned?

12. Which of the following represents the correct I.U.P.A.C. name for the

compounds concerned?

2-chloro-4-methylpentane or 4-chloro-2-methylpentane

13. Which of the following represents the correct I.U.P.A.C. name for the

compounds concerned?

15. Draw formulas for the first five members of each homologous series

beginning with the following compounds :

 CH_3COCH_3

16. Draw formulas for the first five members of each homologous series

 CH_3COCH_3 (c) $H{-}\,CH=CH_2$

17. Give condensed and bond line structural formulas and identify the

functional group(s) present, if any, for :

- (a) 2,2,4-Trimethylpentane
- (b) 2-Hydroxy-1,2,3-propanetricarboxylic acid
- (c) Hexanedial

Watch Video Solution

18. Give condensed and bond line structural formulas and identify the

functional group(s) present, if any, for :

- (a) 2,2,4-Trimethylpentane
- (b) 2-Hydroxy-1,2,3-propanetricarboxylic acid
- (c) Hexanedial

19. Give condensed and bond line structural formulas and identify the

functional group(s) present, if any, for :

- (a) 2,2,4-Trimethylpentane
- (b) 2-Hydroxy-1,2,3-propanetricarboxylic acid
- (c) Hexanedial

20. Identify the functional groups is the following compounds:

21. Identify the functional groups is the following compounds:

22. Identify the functional groups is the following compounds:

23. Which of the two: $O_2NCH_2CH_2O^-$ or $CH_3CH_2O^-$ is expected to

be more stable and why?

24. Explain why alkyl groups act as electron donors when attached to a n

system

25. Draw the resonance structures for the following compounds. Show

the electron shift using curved-arrow notation.

 C_6H_5OH

Watch Video Solution

26. Draw the resonance structures for the following compounds. Show

the electron shift using curved-arrow notation.

 $C_6H_5NO_2$

Watch Video Solution

27. Draw the resonance structures for the following compounds. Show

the electron shift using curved-arrow notation.

 $CH_3CH = CHCHO$

28. Draw the resonance structures for the following compounds. Show the electron shift using curved-arrow notation.

 C_6H_5-CHO

Watch Video Solution

29. Draw the resonance structures for the following compounds. Show

the electron shift using curved-arrow notation.

$$C_6H_5-\overset{+}{C}H_2$$

Watch Video Solution

30. Draw the resonance structures for the following compounds. Show

the electron shift using curved-arrow notation.

$$CH_3CH = CH \overset{+}{C}H_2$$

31. What are electrophiles and nucleophiles ? Explain with examples.

32. Identify the reagents shown in bold in the following equations as nucleophiles or electrophiles :

 $CH_3COOH + HO^-
ightarrow CH_3COO^- + H_2O$

Watch Video Solution

33. Identify the reagents shown in bold in the following equations as nucleophiles or electrophiles :

 $CH_3COCH_3 + \overline{C}N
ightarrow (CH_3)_2(CN)(OH)$

34. Identify the reagents shown in bold in the following equations as

nucleophiles or electrophiles :

 $C_6H_5 + CH_3 \overset{+}{CO} \rightarrow C_6H_5COCH_3$

Watch Video Solution

35. Classify the following reactions in one of the reaction type studied in

this unit.

 $CH_3CH_2Br + HS^- \rightarrow CH_3CH_2SH$

Watch Video Solution

36. Classify the following reactions in one of the reaction type studied in

this unit.

 $CH_3CH_2Br + HO^-
ightarrow CH_2 = CH_2 + H_2O + Br^-$

37. Identify the following reactions as either oxidation or reduction : Cl +

 $e \rightarrow Cl -$

40. What is the relationship between the members of following pairs of structures? Are they structural or geometrical isomers or resonance contributors?

Watch Video Solution

41. What is the relationship between the members of following pairs of structures? Are they structural or geometrical isomers or resonance contributors?

 $H - \overset{+}{\overset{}{\overset{}{C}}} H + \overset{OH}{\overset{}{\overset{}{U}}} H + \overset{OH}{\overset{}{\overset{}{C}}} H + \overset{OH}{\overset{}{}} H + \overset{OH}{\overset{}{} H + \overset{OH}{\overset{}{} H + \overset{OH}{\overset{}{}} H + \overset{OH}{\overset{}{} H + \overset{OH}{\overset{}{} H + \overset{OH}{\overset{}{} H + \overset{OH}{\overset{}} H + \overset{OH}{\overset{}{} H + \overset{OH}{\overset{}} H + \overset{OH}{\overset{}{} H + \overset{OH}{\overset{}{} H + \overset{OH}{\overset{}} H$

42. For the following bond cleavages, use curved-arrows to show the electron flow and classify each as homolysis or heterolysis. Identify reactive intermediate produced as free radical, carbocation and carbanion.

(a)

43. For the following bond cleavages, use curved-arrows to show the electron flow and classify each as homolysis or heterolysis. Identify reactive intermediate produced as free radical, carbocation and carbanion.

Watch Video Solution

44. For the following bond cleavages, use curved-arrows to show the electron flow and classify each as homolysis or heterolysis. Identify reactive intermediate produced as free radical, carbocation and carbanion.

45. For the following bond cleavages, use curved-arrows to show the electron flow and classify each as homolysis or heterolysis. Identify reactive intermediate produced as free radical, carbocation and carbanion.

displacement effect explains the following correct orders of acidity of the

carboxylic acids?

(a) $Cl_3 CCOOH > Cl_2 CHCOOH > ClCH_2 COOH$

(b) $CH_{3}CH_{2}COOH > (CH_{3})_{2}CHCOOH > (CH_{3})_{3}C. COOH$

47. Explain the terms Inductive and Electromeric effects. Which electron displacement effect explains the following correct orders of acidity of the carboxylic acids?

(a) $Cl_3 ext{CCOOH} > Cl_2 CHCOOH > ClCH_2 COOH$

(b) $CH_{3}CH_{2}COOH > (CH_{3})_{2}CHCOOH > (CH_{3})_{3}C. COOH$

Watch Video Solution

48. Give a brief description of the principles of the following techniques

taking an example in each case.

(a) Crystallisation (b) Distillation (c) Chromatography

49. Give a brief description of the principles of the following techniques

taking an example in each case.

pressure and steam distillation?
53. Discuss the chemistry of Lassaigne's test.

Watch Video Solution	
----------------------	--

54. Differentiate between the principle of estimation of nitrogen in an organic compound by (i) Dumas method and (ii) Kjeldahl's method.

Watch Video Solution

55. Discuss the principle of estimation of halogens, sulphur and phosphorus present in an organic compound.

56. Explain the principle of paper chromatography.

57. Why is nitric acid added to sodium extract before adding silver nitrate

for testing halogens?

Watch Video Solution 58. Explain the reason for the fusion of an organic compound with metallic sodium for testing nitrogen, sulphur and halogens. Watch Video Solution

59. Name a suitable technique of separation of the components from a mixture of calcium sulphate and camphor.

60. Explain, why an organic liquid vaporises at a temperature below its boiling point in its steam distillation ?

61. Will CCl_4 give white precipitate of AgCl on heating it with silver nitrate? Give reason for your answer.

Watch Video Solution

62. Why is a solution of potassium hydroxide used to absorb carbon dioxide evolved during the estimation of carbon present in an organic compound?

Watch Video Solution

63. Why is it necessary to use acetic acid and not sulphuric acid for acidification of sodium extract for testing sulphur by lead acetate test?

Watch Video Solution

64. An organic compound contains 69% carbon and 4.8% hydrogen, the remainder being oxygen. Calculate the masses of carbon dioxide and water produced when 0.20 g of this substance is subjected to complete combustion.

Watch Video Solution

65. A sample of 0.50 g of an organic compound was treated according to Kjeldahl's method. The ammonia evolved was absorbed in 50 mL of 0.5 M H_2SO_4 . The residual acid required 60 mL of 0.5 M solution of NaOH for neutralisation. What would be the percentage composition of nitrogen in the compound?

66. 0.3780 g of an organic chloro compound gave 0.5740 g of silver chloride in Carius estimation. Calculate the percentage of chlorine present in the compound.

67. In the estimation of sulphur by Carius method, 0.468 g of an organic sulphur compound afforded 0.668 g of barium sulphate. Find out the percentage of sulphur in the given compound.

Watch Video Solution

68. In the organic compound $CH_2 = CH - CH_2 - CH_2 - C \equiv CH$, the pair of hydridised orbitals involved in the formation of: $C_2 - C_3$ bond is: (a)sp- $sp_2(b)sp$ - $sp_3(c)sp_2$ - $sp_3(d)sp_3$ - sp_3

A. $sp - sp^2$ B. $sp - sp^3$ C. $sp^2 - sp^3$ D. $sp^3 - sp^3$

Answer:

69. In the Lassaigne's test for nitrogen in an organic compound, the Prussian blue colour is obtained due to the formation of:

(a)
$$Na_4[Fe(CN)_6]$$
 (b) $Fe_4[Fe(CN)_6]_3$ (c) $Fe_2[Fe(CN)_6]$ (d) $Fe_3[Fe(CN)_6]_4$

- A. $Na_4 \big[Fe(CN)_6\big]$
- B. $Fe_6[Fe(CN)_6]_3$
- $\mathsf{C}.\,Fe_2\big[Fe(CN)_6\big]$
- D. $Fe_3 \big[Fe(CN)_6 \big]_4$

Answer:

Watch Video Solution

70. Which of the following carbocation is most stable ?

(a) $(CH_3)_3 C. \overset{+}{C}H_2$ (b) $(CH_3)_3 \overset{+}{C}$ (c) $CH_3 CH_2 \overset{+}{C}H_2$ (d) $CH_3 \overset{+}{C}HCH_2 CH_3$

A. $(CH_3)_C$. $\overset{+}{C}H_2$ B. $(CH_3)_3\overset{+}{C}$ C. $CH_3CH_2\overset{+}{C}H_2$ D. $CH_3\overset{+}{C}HCH_2CH_3$

Answer:

71. The best and latest technique for isolation, purification and separation

of organic compounds is

A. crystallisation

B. distillation

C. sublimation

D. chromatography

Answer:

72. The reaction :

 $CH_3CH_2l + KOH(aq)
ightarrow CH_3CH_2OH + Kl$

is classified as

A. electrophilic substitution

B. nucleophilic substitution

C. elimination

D. addition

Answer:

