©゙doubtnut

CHEMISTRY

BOOKS - NAGEEN CHEMISTRY (ENGLISH)

SELF ASSESSMENT PAPER 03

Questions

1. The pressure of a gas is due to \qquad exerted by its molecules per of the walls of the container.

- Watch Video Solution

2. Fill in the blanks by choosing the appropriate word/words from those given in the brackets:
[$\Delta S_{\text {system }}$, energy, unit area, 0, similar, force, $\Delta S_{\text {work }}$, 1, unit volume,
different, identical, hydrogenation, cyclisation, dehydrogenation]
For a spontaneous change, $\Delta S_{\text {total }}=\ldots \ldots+\Delta S_{\text {surroundings }}>$

- Watch Video Solution

3. The enthalpy of combustion of C, H, and sucrose are $-393.5,-286.2$, and $-5644.2 \mathrm{~kJ} / \mathrm{mol}$ calculate the enthalpy of formation of sucrose .

- Watch Video Solution

4. Fill in the blanks by choosing the appropriate word/words from those given in the brackets:
[$\Delta S_{\text {system }}$, energy, unit area, 0, similar, force, $\Delta S_{\text {work }}$, 1, unit volume, different, identical, hydrogenation, cyclisation, dehydrogenation] The conversion of n -hexane to benzene involves \qquad and \qquad

- Watch Video Solution

5. Which of the following when treated with a Grignard reagent yield (s) an alkane?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. Both $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
D. None of the two

Answer:

- Watch Video Solution

6. The aqueous solution of FeCl_{3} is
A. acidic
B. alkaline
C. neutral
D. either acidic or basic depending upon concentration.

D Watch Video Solution

7. The solubility in water of a sparingly soluble salt $A B_{2}$ is
$1.0 \times 10^{-5} \mathrm{~mol} L^{-1}$. Its solubility product number will be
A. 4×10^{-15}
B. 4×10^{-10}
C. 1×10^{-15}
D. 1.0×10^{-10}

Answer:

- Watch Video Solution

8. The total number of electrons that take part in forming bonds in O_{2} is
9. Match the following
(i) MnO_{4}^{-}
(a) Purification of water
(ii) Geometrical Isomerism
(b) good oxidizing agent
(iii) Alum
(c) CO_{3}^{2}
(iv) HCO_{3}^{-}
(d) alkenes

- Watch Video Solution

10. Name the term used when a quantity neither varies nor can have arbitrary values?

- Watch Video Solution

11. State the expression for Heisenberg.s uncertainty principle.

(Watch Video Solution

12. Give reasons why?

The size of cation is smaller than the size of parent atom.

- Watch Video Solution

13. what is the general electronic configuration of the elements off-block?

- Watch Video Solution

14. Name the type of reaction that occurs at anode in an electrochemical cell. Give an example.

- Watch Video Solution

15. Write the Nernst equation at 298 K for the electrode reaction
$2 H^{+}(0.1 M)+2 e^{-} \rightarrow H_{2}(g)$
16. Sort out electrophiles and nucleophiles among the following $\stackrel{+}{\mathrm{NO}_{2}}, \mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}, \mathrm{AlCl}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CN}^{-}, \stackrel{-}{\mathrm{C}} \mathrm{H}_{3}$

- Watch Video Solution

17. What type of electrons get displaced in
(i) inductive effect
(ii) electromeric effect?

- Watch Video Solution

18. At $35^{\circ} \mathrm{C}$ and 700 mm of hg pressure, a gas occupies a 500 ml volume.

What will be its pressure when the temperature is $15^{\circ \circ} \mathrm{C}$ and the volume of the gas is 450 ml ?

- Watch Video Solution

19. 0.303 g of an organic compound was analysed for nitrogen by Kjeldahl's method. The ammonia evolved was absorbed in 50 ml of 0.1 N $\mathrm{H}_{2} \mathrm{SO}_{4}$. The excess acid required 25 ml of 0.1 N NaOH for neutralisation.

Calculate the percentage of nitrogen in the compound.

- Watch Video Solution

20. 0.255 of an organic nitrogenous compound was Kjeldahlised and the ammonia evolved was absorbed in $50 \mathrm{~cm}^{3}$ of $\frac{\mathrm{N}}{10} \mathrm{H}_{2} \mathrm{SO}_{4}$. The excess acid required $10 \mathrm{~cm}^{3}$ of $\frac{N}{5} \mathrm{NaOH}$. Calculate the percentage of nitrogen in the given compound

- Watch Video Solution

21. Complete and balance the following equations:
$\mathrm{MnO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow$ \qquad $+$
22. Complete and balance the following equations:

$$
\mathrm{AlCl}_{3}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \ldots \ldots+
$$

\qquad

- Watch Video Solution

23. The volume of a gas X and chlorine diffusing during the same time and through same holes are 25 mL and 29 mL , respectively. If molecular mass of chlorine is 71 , calculate the molecular mass of gas X.

- Watch Video Solution

24. Write the systematic IUPAC name of the following compound.

- Watch Video Solution

25. Write the IUPAC name of the following compound:

- Watch Video Solution

26. Explain why :

Conc. nitric acid can be stored in aluminium containers.

- Watch Video Solution

27. Give reasons

A mixture of dilute NaOH and aluminium pieces is used to open drain.

- Watch Video Solution

28. How does benzene react with,
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ in the presence of AlCl_{3}

Watch Video Solution

29. What happens when benzene is treated with acetyl chloride in the presence of anhydrous AlCl_{3}

- Watch Video Solution

30. Calculate the bond orders of CO_{3}^{2-}

- Watch Video Solution

31. How will you convert,

Ethane to butane
32. What happens when aluminium reacts with water?

- Watch Video Solution

33. Draw the Lewis structure of the following compounds:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

- Watch Video Solution

34. Draw the Lewis structures of the following species:
$B C l_{3}$

- Watch Video Solution

35. Draw the Lewis structures of the following species:
$\mathrm{H}_{2} \mathrm{~S}$
36. A sugar syrup of weight 214.2 g contains 34.2 g of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$.

Calculate (i) molal concentration (ii) mole fraction of sugar in the syrup.

- Watch Video Solution

37. A sugar syrup of weight 214.2 g contains 34.2 g of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$.

Calculate (i) molal concentration (ii) mole fraction of sugar in the syrup.

- Watch Video Solution

38. 4 g of O_{2} and 2 g of H_{2} are confined in a vessel of capacity 1 litre at $0^{\circ} \mathrm{C}$. Calculate the number of moles of each gas

- Watch Video Solution

39. 4 g of O_{2} and 2 g of H_{2} are confined in a vessel of capacity 1 litre at $0^{\circ} \mathrm{C}$. Calculate the partial pressure of each gas, and

- Watch Video Solution

40.4g of O_{2} and $2 g$ of H_{2} are confined in a vessel of capacity 1 litre at $0^{\circ} \mathrm{C}$. Calculate
the total pressure of the gaseous mixture.

- Watch Video Solution

41. Why are the second ionisation energies of alkaline earth metals much smaller than those of alkali metals ?

- Watch Video Solution

42. Calculate the standard enthalpy change for the reaction

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

given that the standard heatds of formation of $\mathrm{CH}_{4}\left(\mathrm{~g}, \mathrm{CO}_{2}(\mathrm{~g})\right.$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are
$-74.91 \mathrm{~mol}^{-1},-394.12 \mathrm{kJmol}^{-1}$ and $-286.31 \mathrm{kJmol}^{-1}$ respectivley.

- Watch Video Solution

43. Define internal energy of a system.

- Watch Video Solution

44. Which of the following processes are spontaneous and which are nonspontaneous?
(i) Flow of air from high pressure to low pressure.
(ii) Formation of ice in a refrigerator.
(iii) Spreading of a drop of ink in water kept in a beaker.
(iv) Reverse osmosis.
(v) Burning of coal in air.
(vi) Dissolution of Cu in ZnSO_{4} solution.

- Watch Video Solution

45. Which of the following processes are spontaneous and which are nonspontaneous?
(i) Flow of air from high pressure to low pressure.
(ii) Formation of ice in a refrigerator.
(iii) Spreading of a drop of ink in water kept in a beaker.
(iv) Reverse osmosis.
(v) Burning of coal in air.
(vi) Dissolution of Cu in ZnSO_{4} solution.

- Watch Video Solution

46. Which of the following processes are spontaneous and which are nonspontaneous?
(i) Flow of air from high pressure to low pressure.
(ii) Formation of ice in a refrigerator.
(iii) Spreading of a drop of ink in water kept in a beaker.
(iv) Reverse osmosis.
(v) Burning of coal in air.
(vi) Dissolution of Cu in ZnSO_{4} solution.

- Watch Video Solution

47. Which of the following processes are spontaneous and which are nonspontaneous?

Reverse osmosis.

- Watch Video Solution

48. What is the size of particulates?

- Watch Video Solution

49. What is soil pollution and name the common soil pollutants?

- Watch Video Solution

50. Differentiate between inductive and electromeric effect

- Watch Video Solution

51. Discuss how the valence bond theory explains the pyramidal shape of NH_{3} molecule.

- Watch Video Solution

52. Balance the following equations by oxidation number method.
$\mathrm{MnO}_{2}+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

53. Calculate the oxidation number of the underlined atom in the following molecules.

$$
\mathrm{H}_{2} \underline{C}_{2} \mathrm{O}_{4}, \underline{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \underline{P b}_{3} \mathrm{O}_{4}, \underline{l \underline{F}_{7}}, \mathrm{H} \underline{\mathrm{Cl}} \mathrm{O}, \underline{O} F_{2}, \underline{\mathrm{Ni}(\mathrm{CO})_{4}, H \underline{\mathrm{Au}} \mathrm{Cl}_{4}, \mathrm{BaO}_{2}, ~}
$$

- Watch Video Solution

54. Calculate the oxidation number of the underlined atom in the following molecules.
$\mathrm{H}_{2} \underline{\mathrm{C}}_{2} \mathrm{O}_{4}, \underline{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \underline{\mathrm{~Pb}}_{3} \mathrm{O}_{4}, \underline{\mathrm{~F}} \underline{7}_{7}, \mathrm{HCl} \mathrm{O}, \underline{O} F_{2}, \underline{\mathrm{Ni}(\mathrm{CO})_{4}}, \mathrm{HAuCl}_{4}, \mathrm{BaO}_{2}$,

- Watch Video Solution

55. Calculate the oxidation number of the underlined atom in the following molecules.

$$
\mathrm{H}_{2} \underline{C}_{2} \mathrm{O}_{4}, \underline{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \underline{\mathrm{~Pb}_{3} \mathrm{O}_{4}}, \underline{l \underline{F}_{7}}, \mathrm{H} \mathrm{\underline{Cl} O}, \underline{O} F_{2}, \underline{\mathrm{Ni}}(\mathrm{CO})_{4}, \mathrm{HAu}_{\underline{A u} l_{4}}, \mathrm{BaO}_{2},
$$

- Watch Video Solution

56. Calculate the oxidation number of the underlined atom in the following molecules.

$$
\mathrm{H}_{2} \underline{\mathrm{C}}_{2} \mathrm{O}_{4}, \underline{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \underline{\mathrm{~Pb}_{3} \mathrm{O}_{4}, \underline{\mathrm{~F}}} \underline{7}_{7}, \mathrm{H} \underline{\mathrm{Cl}} \mathrm{O}, \underline{O} F_{2}, \underline{\mathrm{Ni} i}(\mathrm{CO})_{4}, \mathrm{HAu}_{\underline{\mathrm{u}} \mathrm{Cl}_{4}, \mathrm{BaO}_{2}, ~}^{\text {, }}
$$

- Watch Video Solution

57. Balance the following equations by ion electron method.
$\mathrm{AsO}_{3}^{3-}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{AsO}_{4}^{3-}+\mathrm{H}^{+}+\mathrm{I}^{-}$

- Watch Video Solution

58. Calculate the oxidation number of the underlined atom in the following ions.

$$
\underline{\mathrm{SO}_{4}^{2-}},\left[\underline{\mathrm{Cr}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\underline{\mathrm{Fe}}(\mathrm{CN})_{6}\right]^{3-}, \mathrm{CrO}_{4}^{2-}, \mathrm{BrO}_{3}^{-}
$$

- Watch Video Solution

59. Calculate the oxidation number of the underlined atom in the following ions.

$$
\underline{\mathrm{SO}_{4}^{2-}},\left[\underline{\mathrm{Cr}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\underline{\mathrm{Fe}}(\mathrm{CN})_{6}\right]^{3-}, \mathrm{CrO}_{4}^{2-}, \mathrm{Br} \mathrm{O}_{3}^{-}
$$

- Watch Video Solution

60. Calculate the oxidation number of the underlined atom in the following ions.
$\underline{\mathrm{SO}_{4}^{2-}},\left[\underline{\mathrm{Cr}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\underline{\left.\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}, \mathrm{CrO}_{4}^{2-}, \mathrm{BrO}_{3}^{-}}\right.$

- Watch Video Solution

61. Calculate the oxidation number of the underlined atom in the following ions.
$\underline{\mathrm{SO}_{4}^{2-}},\left[\underline{\mathrm{Cr}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\underline{\left.\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}, \mathrm{CrO}_{4}^{2-}, \mathrm{Br} \mathrm{O}_{3}^{-}}\right.$
62. An acid of molecular mass 104 contains 34.6% carbon and 3.85% hydrogen. 3.812 mg of the acid required 7.33 cm of 0.01 N NaOH for neutralisation. Suggest a structure for the acid.

- Watch Video Solution

63. A hydrocarbon (A) containing 90\% carbon and having V.D. 20 reacts with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give (B). Compound (B) is reduced by LiAIH_{4} to (C) which on heating with $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives (D). Compound (A) can be converted into (D) directly by hydrogenation in the presence of deactivated palladium-calcium carbonate catalyst. Identity the compounds (A) to (D) and explain the reactions involved.

- Watch Video Solution

64. At $20^{\circ} \mathrm{C}$ the solubility of N_{2} gas in water is $0.0150 \mathrm{~g} L^{-1}$ when the partial pressure of the gas is 580 torr. Find the solubility of nitrogen in water at $20^{\circ} \mathrm{C}$ when the partial pressure is 800 torr.
65. Calculate the degree of ionisation and $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$of a 0.15 M $\mathrm{CH}_{3} \mathrm{COOH}$ solution. The dissociation constant of acetic acid is 1.8×10^{-5}

- Watch Video Solution

66. The hydronium lon concentration of a fruit juice is $4.6 \times 10^{-4} \mathrm{~mol} L^{-1}$. What is the pH of the juice?

- Watch Video Solution

67. A liquid is in equilibrium with its vapour in a seated container at a fixed temperature. The volume of the container is suddenly increased.
(a) What is the initial effect of the change on vapour pressure?
(b) How do rates of evaporation and condensation change initially?
(c) What happens when equilibrium is restored finally and what will be the final vapour pressure?

- Watch Video Solution

68. A liquid is in equilibrium with its vapour in a seated container at a fixed temperature. The volume of the container is suddenly increased.
(a) What is the initial effect of the change on vapour pressure?
(b) How do rates of evaporation and condensation change initially?
(c) What happens when equilibrium is restored finally and what will be the final vapour pressure?

- Watch Video Solution

69. A liquid is in equilibrium with its vapour in a seated container at a fixed temperature. The volume of the container is suddenly increased.
(a) What is the initial effect of the change on vapour pressure?
(b) How do rates of evaporation and condensation change initially?
(c) What happens when equilibrium is restored finally and what will be the final vapour pressure?

- Watch Video Solution

