

# CHEMISTRY

# **BOOKS - NAGEEN CHEMISTRY (ENGLISH)**

## **SELF ASSESSMENT PAPER 1**

### Questions

**1.** Fill in the blanks by choosing the appropriate word/words from those given in the brackets:

(nuclear,  $P_2O_5, \Delta H$ , non-polar,  $NaNH_2$ , geometrical,  $\Delta S$ ,

polar , two, skeletal,  $\Delta U$ , one,  $\Delta G$ )

CO<sub>2</sub> molecule is regarded as a \_\_\_\_\_molecule although it

contains \_\_\_\_\_ bonds.





**3.** Fill in the blanks by choosing the appropriate word/words from those given in the brackets:

(nuclear,  $P_2O_5, \Delta H$ , non-polar,  $NaNH_2$ , geometrical,  $\Delta S$ ,

polar , two, skeletal,  $\Delta U$ , one,  $\Delta G$ )

Chain isomerism is also referred as \_\_\_\_\_ isomerism

**4.** Fill in the blanks by choosing the appropriate word/words from those given in the brackets:

( KOH,  $NaNH_2$ ,)

\_\_\_\_is a better dehydrohalogenating agent as compared to

Watch Video Solution

5. For the following reaction in gaseous phase,

$$CO+rac{1}{2}O_2 o CO_2, rac{K_c}{K_p}$$
 is

A.  $\left( RT
ight) ^{1/2}$ 

 $\mathsf{B.}\left( RT\right) ^{-1/2}$ 

C. RT

D. 
$$\left( RT
ight) ^{-1}$$

#### Answer:



**6.** In van der Waals' equation of state, the constant 'b' is a measure of

A. intermolecular repulsion

B. intermolecular attraction

C. volume occupied by the molecules

D. intermolecular collisions per unit volume

#### Answer:

7. Is the entropy of the universe constant ?

A. is increasing and tending towards a maximum value

B. is decreasing and tending towards zero

C. remains constant

D. decreasing and increasing with a periodic rate.

#### Answer:

Watch Video Solution

8. Nitration of benzene by nitric acid and sulphuric acid is

A. electrophilic substitution

- B. electrophilic addition
- C. nucleophilic substitution
- D. free radical substitution

#### Answer:



### 9. Match the following

- (i) Beilstein test
- (ii) Purest and densest form of carbon
- (iii) Oxidation
- (iv) Solution of acetic acid and sodium (d) acetate
- (a) Loss of electrons
- (b) Acidic buffer
- (c) Halogens
  - Diamond

10. Which of the following are iso-electronic species?  $Na^+, Mg^{2+}, Ca^{2+}, S^{2-}$ 



**11.** Which atom (X) is indicated by the following configuration?

 $X 
ightarrow [Ne] 3s^2 3p^3$ 

Watch Video Solution

**12.** Which atoms are indicated by the following configuration?

 $[Ar]4s^23d^1$ 

**13.** Which element in each of the following pairs of elements would you expect to have lower first ionisation energy? Explain.

Cl, F

Watch Video Solution

14. Which element do you think would have been named by

Lawrence Berkley Laboratory ?

Watch Video Solution

15. What is common in the electronic configuration of H and

alkali metals?

16. Why is LiH least reactive of all the saline hydrides?

17. What happens when acetylene is treated with hypochlorous

acid

Watch Video Solution

18. How would you prepare acetylene from  $CaC_2$ 



**19.** 1.5 g of an organic compound in a quantitative determination of phosphorus gave 2.5090 g of  $Mg_2P_2O_7$ . Calculate the percentage of phosphorus in the compound.

Watch Video Solution

20. 0.1170g of an organic compound on heating with conc.

 $HNO_3$  and silver nitrate in Carius furnace gave 0.42g of AgCl.

Find the percentage of chlorine in the sameple.

Watch Video Solution

**21.** Complete and balance the following equations:

 $BCl_3(g) + H_2(g) \stackrel{1270K}{\longrightarrow} \_\_+\_$ 

**22.** Complete and balance the following equations:

 $H_{3}BO_{3}+C_{2}H_{5}OH \xrightarrow{\Delta}$  +

Watch Video Solution

23. 0.05 g of a gas at 750 mm pressure and 25°C occupy a

volume of 46.5 mL. Calculate the molecular mass of the gas.



**24.** Draw the structures of the following compounds:

2-keto-3-methylbutanamide



**25.** Write the structural formula of following compounds:

1-bromo-3-chlorocyclohexane

Watch Video Solution

26. Why does hydrogen occur in a diatomic form rather than in

a monoatomic form under normal conditions?



27. How would you convert n-butane to iso-butane?

**28.** Name the product obtained on addition of a water molecule of propene in the presence of dil.  $H_2SO_4$ 

Watch Video Solution

29. What happens when benzene is treated with ozone and the

product is subjected to hydrolysis



**30.** What happens when phenol is heated with zinc dust



**31.** Describe the shapes of  $BF_3$  and  $BH_4^-$ . Assign the hybridisation of boron in these species.

**Watch Video Solution** 

**32.** Which hybrid orbitals are used by carbon atoms in the following molecules?

 $CH_3 – CH_3$ , (b)  $CH_3 – CH = CH_2$ , (c)  $CH_3 - CH_2 - OH$ , (d)

 $CH_3-CHO$  (e)  $CH_3COOH$ 

Watch Video Solution

**33.** Which hybrid orbitals are used by carbon atoms in the following molecules?

 $CH_3$ – $CH_3$ , (b)  $CH_3$ –CH =  $CH_2$ , (c)  $CH_3$  –  $CH_2$  – OH, (d)

 $CH_3-CHO$  (e)  $CH_3COOH$ 



 $CH_3-CHO$  (e)  $CH_3COOH$ 



**35.** Hydrogen and oxygen combine to form two compounds, water and hydrogen peroxide. If the percentage of oxygen is 88.89 in water and 94.12 in hydrogen peroxide, show that the data support law of multiple proportions.

**36.**  $1470cm^3$  of a gas is collected over water at 303 K and 74.4 cm of Hg. If the gas weighs 1.98 g and vapour pressure of water at  $30^{\circ}C$  is 3.2 cm of Hg, calculate the molecular weight of the gas.

Watch Video Solution

**37.** State any three limitations of Bohr.s model?



**38.** Calculate the heat of formation of anhydrous  $Al_2Cl_6$  from

the following data:

 $2Al + 6HCl(aq) o Al_2Cl_6(aq) + 3H_2(g), \Delta H = -239.76kcal$ (ii)  $Al_2Cl_6(s) + aq o Al_2Cl_6(aq), \Delta H = -153.69kcal$ (iii)  $H_2(g) + Cl_2(g) o 2HCl(g), \Delta H = -44kcal$ (iv)  $HCl(g) + aq o HCl(aq), \Delta H = -17.31kcal$ 

Watch Video Solution

**39.** Calculate the heat of formation of anhydrous  $Al_2Cl_6$  from the following data:

(i)

 $2Al+6HCl(aq)
ightarrow Al_2Cl_6(aq)+3H_2(g), \Delta H=-239.76kcal$ 

(ii)  $Al_2Cl_6(s)+aq
ightarrow Al_2Cl_6(aq), \Delta H=-153.69kcal$ 

(iii)  $H_2(g)+Cl_2(g)
ightarrow 2HCl(g), \Delta H=-44kcal$ 

(iv)  $HCl(g) + aq 
ightarrow HCl(aq), \Delta H = -17.31 kcal$ 

**40.** Calculate the heat of formation of anhydrous  $Al_2Cl_6$  from the following data:

(i)

$$egin{aligned} &2Al+6HCl(aq) o Al_2Cl_6(aq)+3H_2(g),\,\Delta H=\ -239.76kcal \ &( ext{ii})\ Al_2Cl_6(s)+aq o Al_2Cl_6(aq),\,\Delta H=\ -153.69kcal \ &( ext{iii})\ H_2(g)+Cl_2(g) o 2HCl(g),\,\Delta H=\ -44kcal \ &( ext{iv})\ HCl(g)+aq o HCl(aq),\,\Delta H=\ -17.31kcal \end{aligned}$$

Watch Video Solution

**41.** Calculate the heat of formation of anhydrous  $Al_2Cl_6$  from the following data:

(i)

 $2Al+6HCl(aq)
ightarrow Al_2Cl_6(aq)+3H_2(g), \Delta H=-239.76kcal$ 

(ii)  $Al_2Cl_6(s)+aq
ightarrow Al_2Cl_6(aq),$   $\Delta H=~-153.69kcal$ 

(iii)  $H_2(g)+Cl_2(g)
ightarrow 2HCl(g),$   $\Delta H=-44kcal$ 

(iv)  $HCl(g) + aq 
ightarrow HCl(aq), \, \Delta H = \ - \ 17.31 kcal$ 

Watch Video Solution

42. What do you understand by a spontaneous process ? Give

two examples

Watch Video Solution

**43.** Define Gibb.s free energy and free energy change.



44. What are green chemicals?





**45.** What do you understand by COD?

| Watch Video Solution                     |
|------------------------------------------|
|                                          |
| <b>46.</b> Name three green house gases. |
| <b>Vatch Video Solution</b>              |
|                                          |

**47.** What are Grignard reagents and how are they prepared ? What happens when a Grignard reagent is treated with water

?

**48.** Compare atomic orbitals with molecular orbitals.



Watch Video Solution

50. Calculate the oxidation number of the underlined atom in

the following species.

 $K_4 \underline{Fe}(CN)_6$ 

51. Calculate the oxidation number of the underlined atom in

the following species.

 $\underline{Fe}(H_2O)_6Cl_3$ 

Watch Video Solution

52. Calculate the oxidation number of the underlined atom in

the following species.

 $KAg(CN)_2$ 

Watch Video Solution

53. Calculate the oxidation number of the underlined atom in

the following species.

 $\left[ \underline{Co}(NH_3)_6 
ight]^{3\,+}$ 



**54.** The compound  $AgF_2$  is unstable compound. However, if formed, the compound acts as a very strong oxidising agent. Why ?

Watch Video Solution

55. Balance the following equations.

 $C_2H_5OH + l_2 + OH^- \rightarrow CHl_3 + HCOO^- + I^- + H_2O$ 

(basic medium)

**56.** Name the substance oxidised and the substance reduced, and also identify the oxidising agent and reducing agents in the following reactions :

(a)  $3MnO_2 + 4Al 
ightarrow 3Mn + 2Al_2O_3$ 

(b)  $Fe_2O_3+3CO
ightarrow 2Fe+3CO_2$ 

(c)  $SO_2+2H_2S
ightarrow 3S+2H_2O$ 



**57.** Identify the substance undergoing oxidation, the substance undergoing reduction, the oxidising agent and the reducing agent in each of the following reactions.

$$Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ 
ightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$$

58. Write formulas for the following compounds :

Iron (III) sulphate



**61.** Explain why Alkanes do not possess much chemical reactivity under ordinary conditions?

Watch Video Solution

**62.** State how the following conversions can be carried out:

Ethyl alcohol to ethene.



**63.** How will you convert propene to 2, 3-dimethylbutane?

64. How will you convert

Ethyne to ethane



**65.** An organic compound (A) having molecular formula  $C_2HCl_3O$  reduces Fehling's solution and on oxidation gives a monocarboxylic acid (B) with molecular formula  $C_2HCl_3O_2$ . Upon distillation with sodalime, (B) gives a sweet smelling liquid (C) containing 89.12% chlorine. (C) can also be obtained by heating (A) with alkali. Identity (A), (B) and (C) and explain the reactions involved.

**66.** How much  $PCI_5$  must be taken in a 9.2 L vessel to get 0.5 moles of  $Cl_2$  at a particular temperature? The value of equilibrium constant  $(K_c)$  at the given temperature is 0.0414.



67. How much  $CH_3COONa$  should be added to 1 litre of 0.01

M  $CH_3COOH$  to make . A buffer of pH = 4.1?

 $ig(K_a ~~ ext{for}~~CH_3COOH = 1.8 imes 10^{-5}ig)$ 

Watch Video Solution

**68.** Write the equilibrium constant expressions for the following reactions.

$$Cr_2O_4^{2-}(aq)+Pb^{2+}(aq) \Leftrightarrow PbCrO_4(s)$$



following reactions.

 $NH_3(aq) + H_2O(l) \Leftrightarrow NH_4^+(aq) + OH^-(aq)$ 



70. If 25.  $cm^3$  of 0.050 M  $Ba(NO_3)_2$  are mixed with 25.0 $cm^3$  of 0.020 M NaF, will any  $BaF_2$  precipitated  $K_{sp}$  of  $BaF_2$  is  $1.7 \times 10^{-6}$  at 298K.

