© 'doubtnut

CHEMISTRY

BOOKS - NAGEEN CHEMISTRY (ENGLISH)

SELF ASSESSMENT PAPER 1

Questions

1. Fill in the blanks by choosing the appropriate word/words from those given in the brackets:
(nuclear, $P_{2} O_{5}, \Delta H$, non-polar, $N a N H_{2}$, geometrical, ΔS, polar , two, skeletal, ΔU, one, ΔG)
CO_{2} molecule is regarded as a \qquad molecule although it contains \qquad bonds.
2. Fill in the blanks by choosing the appropriate word/words from those given in the brackets:
(nuclear, $P_{2} O_{5}, \Delta H$, non-polar, $N a N H_{2}$, geometrical, ΔS, polar , two, skeletal, ΔU, one, $\Delta G)$

For a chemical process, $q_{p}=\ldots \ldots \quad$ but $q_{v}=$

Watch Video Solution

3. Fill in the blanks by choosing the appropriate word/words from those given in the brackets:
(nuclear, $P_{2} O_{5}, \Delta H$, non-polar, $N a N H_{2}$, geometrical, ΔS, polar , two, skeletal, ΔU, one, ΔG)

Chain isomerism is also referred as \qquad isomerism
4. Fill in the blanks by choosing the appropriate word/words from those given in the brackets:
($\mathrm{KOH}, \mathrm{NaNH} \mathrm{N}_{2}$)
is a better dehydrohalogenating agent as compared to

- Watch Video Solution

5. For the following reaction in gaseous phase,
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \frac{K_{c}}{K_{p}}$ is
A. $(R T)^{1 / 2}$
B. $(R T)^{-1 / 2}$
C. RT
D. $(R T)^{-1}$

Answer:

- Watch Video Solution

6. In van der Waals' equation of state, the constant ' b ' is a measure of
A. intermolecular repulsion
B. intermolecular attraction
C. volume occupied by the molecules
D. intermolecular collisions per unit volume

Answer:

7. Is the entropy of the universe constant ?
A. is increasing and tending towards a maximum value
B. is decreasing and tending towards zero
C. remains constant
D. decreasing and increasing with a periodic rate.

Answer:

- Watch Video Solution

8. Nitration of benzene by nitric acid and sulphuric acid is
A. electrophilic substitution
B. electrophilic addition
C. nucleophilic substitution
D. free radical substitution

Answer:

- Watch Video Solution

9. Match the following
(i) Beilstein test
(a) Loss of electrons
(ii) Purest and densest form of carbon
(b) Acidic buffer
(iii) Oxidation
(c) Halogens
(iv) Solution of acetic acid and sodium
(d) Diamond acetate
10. Which of the following are iso-electronic species? $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{S}^{2-}$

(D) Watch Video Solution

11. Which atom (X) is indicated by the following configuration? $X \rightarrow[N e] 3 s^{2} 3 p^{3}$

(D) Watch Video Solution

12. Which atoms are indicated by the following configuration?
$[A r] 4 s^{2} 3 d^{1}$
13. Which element in each of the following pairs of elements would you expect to have lower first ionisation energy? Explain.
Cl, F

D Watch Video Solution

14. Which element do you think would have been named by

Lawrence Berkley Laboratory?

(D) Watch Video Solution

15. What is common in the electronic configuration of H and alkali metals?
16. Why is LiH least reactive of all the saline hydrides?

- Watch Video Solution

17. What happens when acetylene is treated with hypochlorous acid

(D) Watch Video Solution

18. How would you prepare acetylene from $\mathrm{CaC} \mathrm{C}_{2}$
19. 1.5 g of an organic compound in a quantitative determination of phosphorus gave 2.5090 g of $\mathrm{Mg}_{2} \mathrm{P}_{2} O_{7}$.

Calculate the percentage of phosphorus in the compound.

- Watch Video Solution

20. 0.1170 g of an organic compound on heating with conc. HNO_{3} and silver nitrate in Carius furnace gave 0.42 g of AgCl .

Find the percentage of chlorine in the sameple.

D Watch Video Solution

21. Complete and balance the following equations:
$\mathrm{BCl}_{3}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{1270 \mathrm{~K}} \ldots{ }^{+}+$
22. Complete and balance the following equations:
$\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\Delta}$ \qquad

- Watch Video Solution

23. 0.05 g of a gas at 750 mm pressure and $25^{\circ} \mathrm{C}$ occupy a volume of 46.5 mL . Calculate the molecular mass of the gas.

- Watch Video Solution

24. Draw the structures of the following compounds:

2-keto-3-methylbutanamide
25. Write the structural formula of following compounds:

1-bromo-3-chlorocyclohexane

(D) Watch Video Solution

26. Why does hydrogen occur in a diatomic form rather than in a monoatomic form under normal conditions?

D Watch Video Solution

27. How would you convert n-butane to iso-butane?
28. Name the product obtained on addition of a water molecule of propene in the presence of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$

- Watch Video Solution

29. What happens when benzene is treated with ozone and the product is subjected to hydrolysis

D Watch Video Solution

30. What happens when phenol is heated with zinc dust
31. Describe the shapes of $B F_{3}$ and $B H_{4}^{-}$. Assign the hybridisation of boron in these species.

- Watch Video Solution

32. Which hybrid orbitals are used by carbon atoms in the following molecules?
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$, (b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$, (c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$, (d)
$\mathrm{CH}_{3}-\mathrm{CHO}$ (e) $\mathrm{CH}_{3} \mathrm{COOH}$

(D) Watch Video Solution

33. Which hybrid orbitals are used by carbon atoms in the following molecules?

$$
\begin{aligned}
& \mathrm{CH}_{3}-\mathrm{CH}_{3} \text {, (b) } \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \text {, (c) } \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \text {, (d) } \\
& \mathrm{CH}_{3}-\mathrm{CHO} \text { (e) } \mathrm{CH}_{3} \mathrm{COOH}
\end{aligned}
$$

- Watch Video Solution

34. Which hybrid orbitals are used by carbon atoms in the following molecules?

$$
\begin{aligned}
& \mathrm{CH}_{3}-\mathrm{CH}_{3} \text {, (b) } \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \text {, (c) } \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \text {, (d) } \\
& \mathrm{CH}_{3}-\mathrm{CHO} \text { (e) } \mathrm{CH}_{3} \mathrm{COOH}
\end{aligned}
$$

(D) Watch Video Solution

35. Hydrogen and oxygen combine to form two compounds, water and hydrogen peroxide. If the percentage of oxygen is 88.89 in water and 94.12 in hydrogen peroxide, show that the data support law of multiple proportions.

(Watch Video Solution

$36.1470 \mathrm{~cm}^{3}$ of a gas is collected over water at 303 K and 74.4
cm of Hg . If the gas weighs 1.98 g and vapour pressure of water at $30^{\circ} \mathrm{C}$ is 3.2 cm of Hg , calculate the molecular weight of the gas.

- Watch Video Solution

37. State any three limitations of Bohr.s model?

D Watch Video Solution

38. Calculate the heat of formation of anhydrous $A l_{2} C l_{6}$ from the following data:
(i)
$2 \mathrm{Al}+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow A l_{2} \mathrm{Cl}_{6}(a q)+3 \mathrm{H}_{2}(g), \Delta H=-239.76 \mathrm{kcal}$
(ii) $A l_{2} C l_{6}(s)+a q \rightarrow A l_{2} C l_{6}(a q), \Delta H=-153.69 k c a l$
(iii) $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g), \Delta H=-44 k c a l$
(iv) $\mathrm{HCl}(g)+a q \rightarrow H C l(a q), \Delta H=-17.31 k c a l$

(D) Watch Video Solution

39. Calculate the heat of formation of anhydrous $A l_{2} C l_{6}$ from the following data:
(i)
$2 \mathrm{Al}+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}(a q)+3 \mathrm{H}_{2}(g), \Delta H=-239.76 \mathrm{kcal}$
(ii) $A l_{2} C l_{6}(s)+a q \rightarrow A l_{2} C l_{6}(a q), \Delta H=-153.69 k c a l$
(iii) $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}=-44 \mathrm{kcal}$
(iv) $\mathrm{HCl}(g)+a q \rightarrow H C l(a q), \Delta H=-17.31 k c a l$
40. Calculate the heat of formation of anhydrous $A l_{2} C l_{6}$ from the following data:
(i)
$2 \mathrm{Al}+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}(\mathrm{aq})+3 \mathrm{H}_{2}(g), \Delta H=-239.76 \mathrm{kcal}$
(ii) $A l_{2} C l_{6}(s)+a q \rightarrow A l_{2} C l_{6}(a q), \Delta H=-153.69 k c a l$
(iii) $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta H=-44 \mathrm{kcal}$
(iv) $\mathrm{HCl}(g)+a q \rightarrow H C l(a q), \Delta H=-17.31 k c a l$

- Watch Video Solution

41. Calculate the heat of formation of anhydrous $A l_{2} C l_{6}$ from the following data:
(i)
$2 \mathrm{Al}+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow A l_{2} \mathrm{Cl}_{6}(a q)+3 \mathrm{H}_{2}(g), \Delta H=-239.76 \mathrm{kcal}$
(ii) $A l_{2} C l_{6}(s)+a q \rightarrow A l_{2} C l_{6}(a q), \Delta H=-153.69 k c a l$
(iii) $H_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta H=-44 \mathrm{kcal}$ (iv) $\mathrm{HCl}(g)+a q \rightarrow \mathrm{HCl}(a q), \Delta H=-17.31 \mathrm{kcal}$

- Watch Video Solution

42. What do you understand by a spontaneous process? Give two examples

(D) Watch Video Solution

43. Define Gibb.s free energy and free energy change.

D Watch Video Solution

44. What are green chemicals?
45. What do you understand by COD?

D Watch Video Solution

46. Name three green house gases.

D Watch Video Solution

47. What are Grignard reagents and how are they prepared ?

What happens when a Grignard reagent is treated with water
?
(D) Watch Video Solution
48. Compare atomic orbitals with molecular orbitals.

(D) Watch Video Solution

49. Balance the following equation in basic medium.
$\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{I}^{-}$

- Watch Video Solution

50. Calculate the oxidation number of the underlined atom in the following species.
$K_{4} \underline{F e}(C N)_{6}$

- Watch Video Solution

51. Calculate the oxidation number of the underlined atom in the following species.
$\underline{\mathrm{Fe}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{3}$

- Watch Video Solution

52. Calculate the oxidation number of the underlined atom in the following species.
$K \underline{A g}(C N)_{2}$

Watch Video Solution

53. Calculate the oxidation number of the underlined atom in the following species.
$\left[\underline{\mathrm{Co}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

- Watch Video Solution

54. The compound $A g F_{2}$ is unstable compound. However, if formed, the compound acts as a very strong oxidising agent. Why ?

- Watch Video Solution

55. Balance the following equations.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+l_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{CHl}_{3}+\mathrm{HCOO}^{-}+\mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}$ (basic medium)

- Watch Video Solution

56. Name the substance oxidised and the substance reduced, and also identify the oxidising agent and reducing agents in the following reactions :
(a) $3 \mathrm{MnO}_{2}+4 \mathrm{Al} \rightarrow 3 \mathrm{Mn}+2 \mathrm{Al}_{2} \mathrm{O}_{3}$
(b) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
(c) $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

57. Identify the substance undergoing oxidation, the substance undergoing reduction, the oxidising agent and the reducing agent in each of the following reactions.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

- Watch Video Solution

58. Write formulas for the following compounds : Iron (III) sulphate

- Watch Video Solution

59. Write formulas for the following compounds :

Chromium (III) oxide

- Watch Video Solution

60. Why is benzene extra ordinarily stable though it contains three double bonds?
61. Explain why Alkanes do not possess much chemical reactivity under ordinary conditions?

- Watch Video Solution

62. State how the following conversions can be carried out:

Ethyl alcohol to ethene.

D Watch Video Solution

63. How will you convert propene to 2 , 3 -dimethylbutane?
64. How will you convert

Ethyne to ethane

(D) Watch Video Solution

65. An organic compound (A) having molecular formula
$\mathrm{C}_{2} \mathrm{HCl}_{3} \mathrm{O}$ reduces Fehling's solution and on oxidation gives a monocarboxylic acid (B) with molecular formula $\mathrm{C}_{2} \mathrm{HCl}_{3} \mathrm{O}_{2}$. Upon distillation with sodalime, (B) gives a sweet smelling liquid (C) containing 89.12\% chlorine. (C) can also be obtained by heating (A) with alkali. Identity (A), (B) and (C) and explain the reactions involved.

(Watch Video Solution

66. How much $P C I_{5}$ must be taken in a 9.2 L vessel to get 0.5 moles of $C l_{2}$ at a particular temperature? The value of equilibrium constant $\left(K_{c}\right)$ at the given temperature is 0.0414 .

(D) Watch Video Solution

67. How much $\mathrm{CH}_{3} \mathrm{COONa}$ should be added to 1 litre of 0.01

M $\mathrm{CH}_{3} \mathrm{COOH}$ to make . A buffer of $\mathrm{pH}=4.1$?
$\left(K_{a}\right.$ for $\left.\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}\right)$

(D) Watch Video Solution

68. Write the equilibrium constant expressions for the following reactions.

$$
\mathrm{Cr}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})+\mathrm{Pb}^{2+}(\mathrm{aq}) \Leftrightarrow \mathrm{PbCrO}_{4}(s)
$$

- Watch Video Solution

69. Write the equilibrium constant expressions for the following reactions.
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$

- Watch Video Solution

70. If $25 . \mathrm{cm}^{3}$ of $0.050 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ are mixed with $25.0 \mathrm{~cm}^{3}$ of 0.020 M NaF , will any $B a F_{2}$ precipitated $K_{s p}$ of $B a F_{2}$ is 1.7×10^{-6} at $298 K$.

- Watch Video Solution

