

MATHS

BOOKS - S CHAND MATHS (ENGLISH)

BASIC CONCEPTS OF POINTS AND THEIR COORDINATES

Exercise 15 A

1. Where will a point lie if (i) its ordinate is zero, (ii) its

abscissa is zero?

2. Where will a point lie if (i) the abscissa equals the ordinate, (ii) the, positive abscissa equals the negative of the positive ordinate?

Exercise 15 B

- 1. Find the mid-points of the lines joining
- (i) (5,8), (9,11), (ii) (0,0), (8, -5), (iii)

$$(\,-7,0),\,(0,\,10),\,\,({\sf iv})\,(\,-4,\,3),\,(6,\,\,-7),$$

2. Find the mid-points of the sides of a triangle whose

vertices are

A(1, -1)B(4, -1)C(4, 3).

View Text Solution

3. Find the centre of a circle if the end points of a diameter are A(-5,7) and B(3, -11).

4. If M is the mid-point of AB, find the co-ordinates of :

(i) A if the co-ordinates of M and B are M

(2, 8) and B(-4, 19)

and (ii) B if the co-ordinates of A and M are

A(-1,2), M(-2,4).

View Text Solution

5. Find the distance between each of the following pairs of points:

(i) (7,9), (4,5): (ii) (15, 11), (3, 6): (iii) (4, -5), (0, 0): (iv) (2,

-11), (-4, -3)

6. Find the radius of the circle that has its centre at (0,

-4) and passes through

 $\left(\sqrt{13},\,2\right).$

7. Find the lengths of the sides of the triangle whose

vertices are

A(3, 4), B(2, -1) and C(4, -6).

8. The vertices of

 $\triangle ABC$

are

A(-1,3), B(1,1) and C(5,1).

Find the length of the median to (i) AB, (ii)AC, (iii) BC.

9. A circle has its centre at the origin and a radius of

 $\sqrt{12}$.

State whether each of the following points is on, outside or inside the circle:

$$ig(1,\ -\sqrt{7}ig),\,(3,\,5),\,ig(2,\,2\sqrt{2}ig).$$

10. Find the coordinates of the points which divides internally the join of the points

(i) (8, 9) and (-7, 4)

in the ratio

2:3, (ii) (1, -2) and (4, 7)

in the ratio

1:2.

11. Find the coordinates of the point which divides externally the join of the points

(i) (-4, 4) and (1, 7)in the ratio 2:1, (ii) (3, 4) and (-6, 2)in the ratio 3:2.

View Text Solution

12. Find the coordinates of the points of trisection of

the line joinging the points (2, 3) and (6, 5).

13. The line joining the points (3, 2) and (6, 8) is divided into four equal parts, find the coordinates of

the points of section.

15. In what ratio is the line joining the points

(i) (2, -3) and (5, 6) divided by the x - axis, (ii) (3, -6) and

(-6, 8) divided by the y - axis?

points are (-4, 6), (2, -2) and (2,5) respectively.

18. If

 $(x_1, y_1) = (2, 3), x_2 = 3$ and $y_3 = -2$ and Gis(0, 0), find

 y_2 and x_3 .

19. Find the coordinates of the in-centre of the triangle whose vertices are (-36, 7), (20, 7) and (0, -8).

1. Find the area of the triangle whose vertices are

(i) (4,2) (4,5) and (-2, 2),

(ii) (0, 0), (-2,3) and (10,7),

(iii) (a, 0), (0, b) and (x, y).

2. Find the area of the quadrilateral whose vertices are

(i) (1, 1), (7, -3) (12, 2) and (7, 21),

(ii) (1, 1), (3, 4), (5, -2) and (4, -7).

3. If (7,a), (-5,2) and (3,6) are collinear, find a.

	0	View Text Solution	n	
--	---	--------------------	---	--

4. If the area of the quadrilateral whose angular points A, B, C, D taken in order are (1, 2), (-5, 6), (7, -4) and (-2, k) be zero, find the value of k.

5. The straight lines

 $y = m_1 x + c_1 \, {}^{,} y = m_2 x + c_2 \, {}^{,} \, ext{ and } \, x = 0$

intersect in the three points P, Q, and R. Find the area

of the triangle PQR. What is the value of the area if

$$c_1 = c_2$$
?

2. Find the third vertex of a triangle if two of its vertices are at (-1, 4) and (5, 2) and the medians

through these vertices meet at (0, -3).

