©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - U-LIKE PHYSICS (HINGLISH)

CBSE EXAMINATION PAPER 2020

(SOLVED)

Section A

1. The relationship between Brewester angle θ
and the speed of light ' v ' in
A. $v \tan \theta=c$
B. $\mathrm{c} \tan \theta=\mathrm{v}$
C. $v \sin \theta=c$
D. $c \sin \theta=v$

Answer: A::C

D Watch Video Solution
2. Photo diodes are used to detect
A. radio waves.
B. gamma rays.
C. IR rays.
D. optical signals.

Answer: A::C

D View Text Solution

3. The selectivity of a series LCR a.c. circuit is
large, when
A. L is large and R is large.
B. L is small and R is small.
C. L is large and R is small.
D. $L=R$.

Answer: A::B::C::D

D View Text Solution

4. The graph showing the correct variation of linear momentum (p) of a charge particle with its de-Broglie wavelength (λ) is

B.

c.

Answer: B
5. The wavelength and intensity of light emitted by a LED depend upon
A. forward bias and energy gap of the semiconductor.
B. energy gap of the semiconductor and reverse bias.
C. energy gap only.
D. forward bias only.

- View Text Solution

6. A charge particle after being accelerated through a potential difference V enters in a uniform magnetic field and moves in a circle of radius r. If V is doubled, the radius of the circle will become
A. $2 r$
B. $\sqrt{2 r}$
C. 4 r
D. $\frac{r}{\sqrt{2}}$

Answer: B

D View Text Solution

7. The electric flux through a closed Gaussian
surface depends upon
A. net charge enclosed and permittivity of the medium.
B. net charge enclosed, permittivity of the
medium and the size of the Gaussian
surface.
C. et charge enclosed only.
D. permittivity of the medium only.

Answer: A::C::D

D View Text Solution

8. If photons of frequency v are incident on the surfaces of metals. A and B of threshold frequencies $\frac{v}{2}$ and $\frac{v}{3}$ respectively, the ratio of
the maximum kinetic energy of electrons emitted from A to that from B is
A. $2: 3$
B. $3: 4$
C. $1: 3$
D. $\sqrt{3}: \sqrt{2}$

Answer: B::C

D View Text Solution

9. The power factor of a series LCR circuit at

resonance will be

A. 1
B. 0
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: A
(D) View Text Solution
10. A biconcave lens of power P vertically splits into two identical plano concave parts. The power of each part will be
A. $2 P$
B. $\frac{P}{2}$
C. P
D. $\frac{P}{\sqrt{2}}$

Answer: B
11. The physical quantity having SI unit $\mathrm{N} C^{-1}$ m is \qquad .

- View Text Solution

12. A copper wire of non-uniform area of crosssection is connected to a d.c. battery. The physical quantity which remains constant along the wire is
13. A point charge is placed at the centre of a hollow conducting sphere of internal radius ' and outer radius ' $2 r$. The ratio of the surface charge density of the inner surface to that of the outer surface will be \qquad

D View Text Solution

14. The _____ a property of materials C, Si
and Ge depends upon the energy gap between their conduction and valence bands.
15. The ability of a junction diode to an
alternating voltage is based on the fact that it allows current current to pass only when it is forward biased .

D View Text Solution

16. Define the term 'current sensitivity' of a moving coil galvanometer.
17. Depict the fields diagram of an electromagnetic wave propagating along positive x-axis with its electric field along y axis.

D View Text Solution

18. Write the conditions on path difference
under which (i) constructive (ii) destructive
interference occur in Young's double-slit experiment.
19. Plot a graph showing varñation of induced e.m.f. with the rate of change of current flowing through a coil.

D View Text Solution

20. A series combination of an inductor (L),
capacitor (C) and a resistor (R) is connected across an ac source of emf of peak value E_{0} and angular frequency (ω). Plot a graph to
show variation of impedance of the circuit with angular frequency (ω).

D View Text Solution

21. An electron moves along $+x$ direction. It enters into a region of uniform magnetic field
B directed along - z direction as shown in
figure. Draw the shape of trajectory followed
by the electron after entering the field.

D View Text Solution

22. A square shaped current carrying loop

MNOP is placed near a straight long current carrying wire $A B$ as shown in the figure. The wire and the loop lie in the same plane. If the
loop experiences a net force F towards the wire, find the magnitude of the force on the side 'NO" of the loop.

- View Text Solution

Section B

1. Derive the expression for the torque acting on an electric dipole, when it is held in a uniform electric field. Identify the orientation of the dipole in the electric field, in which it attains stable equilibrium.

D View Text Solution

2. Obtain the expression for the energy stored in a capacitor connected across a dc battery.

Hence define energy density of the capacitor.
3. Gamma rays and radio waves travel with the same velocity in free space. Distinguish between them in tems of their origin and the main application.

- View Text Solution

4. Light from a sodium lamp (S) passes
through two polaroid sheets P_{1} and P_{2} as
shown in figure. What will be the effect on the
intensity of the light transmitted (i) by P_{1} and
(ii) by P_{2} on rotating polaroid P_{1} about the direction of propagation of light ? Justify your answer in both cases.

D View Text Solution

5. Define the term 'wavefront of light'. A plane
wave front $A B$ propagating from denser medium (1) into a rarer medium (2) is incident on the surface $P_{1} P_{2}$ separating the two media
as shown in figure.

Using Huygen's principle, draw the secondary wavelets and obtain the refracted wavefront in the diagram.

D View Text Solution

6. A heavy nucleus P of mass number 240 and binding energy 7.6 MeV per nucleon splits in to two nuclei Q and R of mass numbers 110 ,

130 and binding energy per nucleon 8.5 MeV and 8.4 MeV , respectively. Calculate the energy released in the fission.

D View Text Solution

7. Figure shows the stopping potential $\left(V_{0}\right)$ for the photo electron vers $\left(\frac{1}{\lambda}\right)$ graph, for two metals A and B, λ being the wavelength of incident light.

How is the value of Planck's constant determined from the graph?
(D) View Text Solution
8. Figure shows the stopping potential $\left(V_{0}\right)$
for the photo electron ers $\left(\frac{1}{\lambda}\right)$ graph, for
two metals A and B, λ being the wavelength of incident light.

If the distance between the light source and the surface of metal A is increased, how will the stopping potential for the electrons emitted from it be affected ? Justify your answer.

D View Text Solution

9. Use Bohr's model of hydrogen atom to obtain the relationship between the angular momentum and t magnetic moment of the revolving electron.

D View Text Solution

10. In a single slit diffraction experiment, the width of the slit is increased. How will the (i) size and (ii) intensity of central bright band be affected ? Justify your answer.

Section C

1. Differentiate between electrical resistance and resistivity of a conductor.

D View Text Solution

2. Two metallic rods, each of length L, area of cross A_{1} and A_{z}, having resistivities ρ_{1} and ρ_{2} are connected in parallel across a d.c. battery.

Obtain the expression for the effective resistivity of this combination.

D View Text Solution

3. Calculate the de-Broglie wavelength associated with the electron revolving in the
first excited state of hydrogen atom. The ground state energy of the hydrogen atom is 13.6 eV .
4. Define the term decay constant of a radioactive substance.

D View Text Solution
5. The half -life of $\frac{238}{92} U$ undergoing a decay
is 4.5×10^{9} years. Calculate the activity of 10 g
same of $\frac{238}{92} \mathrm{U}$.

- View Text Solution

6. What is a solar cell ? Draw its V-I characteristics. Explain the three processes involved in its working.

D View Text Solution

7. Draw the circuit diagram of a full wave rectifier. Explain its working showing its input and output waveforms.
8. An optical instrument uses a lens of power

100 D for objective lens and 50 D for its eyepiece. When the tube length is kept at 25
cm the final image is formed at infinity.
(a) Identify the optical instrument.
(b) Calculate the magnification produced by the instrument.

D View Text Solution

9. Two point charges q_{1}, and q_{2} are kept at a
distance of r_{12} in air. Deduce the expression
for the electrostatic potential energy of this
system.

D View Text Solution

10. If an extermal electric field (E) is applied on
the system, write the expression for the total energy of this system.

D View Text Solution
11. When a conducting loop of resistance 10Ω and area $10 \mathrm{~cm}^{2}$ is removed from an external magnetic field acting normally, the variation of induced current in the loop with time is shown in the figure.

Find the
(i) total charge passed through the loop.
(ii) change in magnetic flux through the loop.
(iii) magnitude of the magnetic field applied.

- View Text Solution

Section D

1. Define the term 'focal length ofa mirror. With
the help of a ray diagram, obtain the relation between its focal length and radius of curvature.
2. Calculate the angle of emergence (e) of the ray of light incident normally on the face AC of a glass prism $A B C$ of refractive index $\sqrt{3}$. How will the angle of emergence change qualitatively, if the ray of light emerges from the prism into a liquid of refractive index 1.3 instead of air ?

3. Define the term 'resolving power of a telescope'. How will the resolving power be effected with the increase in
(i) Wavelength of light used . (ii) Diameter of the objective Lens justify your answers.

D View Text Solution

4. A screen is placed 80 cm from an object. The image of the object on the screen is formed by
a convex lens placed between them at two different locations separated by a distance 20 cm . Determine the focal length of the lens.

D View Text Solution

5. Show that an ideal inductor does not dissipate power in an ac circuit.

D View Text Solution
6. The variation of inductive reactance $\left(X_{L}\right)$ of an inductor with the frequency (f) of the a.c. source of 100 V and variable frequency is shown in the figure.

(i) Calculate the self-inductance of the inductor.
(ii) When this inductor is used in series with a capacitor of unknown value and a resistor of
10Ω at $300 \mathrm{~s}^{-1}$, maximum power dissipation occurs in the circuit. Calculate the capacitance of the capacitor.

D View Text Solution

7. A conductor of length T'is rotated about one of its ends at a constant angular speed ' ω ' in a plane perpendicular to a uniform magnetic field B. Plot graphs to show variations of the emf induced across the ends of the conductor
with (i) angular speed o and (ii) length of the conductor i .

D View Text Solution

8. Two concentric circular loops of radius 1 cm and 20 cm are placed coaxially.
(i) Find mutual inductance of the arrangement
(ii) If the current passed through the outer loop is changed at a rate of $5 \mathrm{~A} / \mathrm{ms}$, find the emf induced in the inner loop. Assume the
magnetic field on the inner loop to be uniform.

D View Text Solution
9. Write two important characteristics of equipotential surfaces.

D View Text Solution

10. A thin circular ring of radius r is charged
uniformly so that its linear charge density
becomes λ. Derive an expression for the electric field at a point P at a distance x from it along the axis of the ring. Hence, prove that at large distances ($r \gg r$), the ring behaves as a point charge.

D View Text Solution

11. State Gauss's law on electrostatics and derive an expression for the electric field due to a long straight thin uniformly charged wire
(linear charge density) at a point lying at a distance r from the wire.

- View Text Solution

