

MATHS

BOOKS - S CHAND MATHS (ENGLISH)

CONIC SECTIONS

Examples

1. The vertex of the parabola

$$y^2 - 4y - 16x - 12 = 0$$
 is

A. (2,-1)

B. (-1,2)

C. (1,-2)

D. (1,2)

Answer: B

Watch Video Solution

2. The length of the latus - rectum of the parabola $4y^2+2x-20y+17=0$ is

- A. 2
- B. $\frac{1}{8}$
- $\mathsf{C.}\ \frac{1}{2}$
- D. 4

Answer: C

Watch Video Solution

3. If the length of the major axis of an ellipse in 3 times the length of minor axis, then its eccentricity is

A.
$$\frac{2}{3}$$

$$B. \frac{\sqrt{2}}{3}$$

$$\mathsf{C.} \; \frac{2\sqrt{2}}{3}$$

D.
$$\frac{1}{3}$$

Answer: C

4. The radius of the circle passing through the foci of the ellipse
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
 and having

its centre at (0,3) is

A. 4 units

B. 3 units

C. $\sqrt{12}$ units

D. $\frac{7}{2}$ units

Answer: A

5. The eccentricity of the hyperbola whose latus-rectum is 8 and length of the conjugate axis is equal to half the distance between the foci, is

A.
$$\frac{4}{3}$$

$$\mathsf{B.} \; \frac{4}{\sqrt{3}}$$

$$\mathsf{C.}\,\frac{2}{\sqrt{3}}$$

D.
$$2\sqrt{3}$$

Answer: C

vater video Solution

6. The length of latus-rectum of the ellipse

$$3x^2 + 4y^2 - 6x + 8y - 5 = 0$$
 is

A. 3

$$\mathsf{B.}\;\frac{3}{2}$$

C.
$$\frac{\sqrt{3}}{2}$$

D. none of these

Answer: A

7. If the line 2x - 3y = k touches the parabola

 $y^2=6x$, then the value of k is

(i) $\frac{27}{4}$

(ii) $-\frac{27}{4}$

(iii) -27

(iv) 27

A. $\frac{27}{4}$

B. $\frac{27}{4}$

 $\mathsf{C.}-27$

D. 27

Answer: B

Watch Video Solution

Multiple Choice Questions

1. If a parabola has the origin as its focus and the line $\,x=2\,$ as the directrix, then the coordinates of the vertex of the parabola are

A. (0,1)

B. (1,0)

C.(0,-1)

D. (-1,0)

Answer: B

Watch Video Solution

2. The equation of the parabola with vertex at origin and directrix the line y + 3 = 0 is

A. $y^2 = 12x$

B. $y^2 = -12y$

$$\mathsf{C.}\,x^2=12y$$

$$\mathsf{D}.\,x^2=\,-\,12y$$

Answer: C

Watch Video Solution

3. The equation of parabola with focus at

$$(\,-3,0)$$
 and directrix $x+3=0$ is

$$\mathsf{A.}\,x^2=12y$$

$$B. x^2 = -12y$$

$$\mathsf{C.}\,y^2=12x$$

D.
$$y^2 = -12x$$

Answer: C

Watch Video Solution

4. The equation of parabola through (-1,3) and symmetric with respect to x-axis and vertex at origin is (i) $y^2=-9x$ (ii) $y^2=9x$ (iii) $y^2=3x$ (iv) $y^2=-3x$

A.
$$y^2 = -9x$$

$$\mathsf{B.}\,y^2=9x$$

$$\mathsf{C}.\,y^2=3x$$

$$\mathsf{D}.\,y^2=\,-\,3x$$

Answer: A

Watch Video Solution

5. The area of the triangle formed by the lines joining the vertex of the parabola $x^2=12y$ to the ends of its latus rectum is

- A. 12 sq. units
- B. 16 sq. units
- C. 18 sq.units
- D. 24 sq. units

Answer: C

Watch Video Solution

6. If the parabola $y^2=4ax$ passes through the point (3,2) , then the length of its latus rectum is

A.
$$\frac{2}{3}$$
B. $\frac{4}{3}$

B.
$$\frac{1}{3}$$

Answer: B

Vatch Video Solution

7. In the parabola $y^2=4ax$, the length of the chord passing through the vertex and inclined to the x-axis at $\frac{\pi}{4}$ is

- A. $4\sqrt{2}$ a units
- B. $2\sqrt{2}$ a units
- C. $\sqrt{2}$ a units
- D. none of these

Answer: A

- 8. The number of parabolas that can be drawn
- , if two ends of the latus rectum are given, is

- A. 1
- B. 2
- C. 3
 - D. 4

Answer: B

Watch Video Solution

9. If P is the point (1,0) and Q is any point on the parabola $y^2=8x$ then the locus of mid point of PQ is

A.
$$y^2 - 4x + 2 = 0$$

B. $x^2 - 4y + 2 = 0$

C. $y^2 - 4x - 2 = 0$

D. $x^2 - 4y - 2 = 0$

Answer: A

Watch Video Solution

10. The vertex of the parabola $y^2 + 8x - 2y + 17 = 0$ is (i) (1,-2) (ii) (-2,1) (iii) (1,2) (iv) (2,-1)

A. (1,-2)

B. (-2,1)

C. (1,2)

D. (2,-1)

Answer: B

Watch Video Solution

11. The length of latus - rectum of the parabola $x^2-4x+8y+12=0$ is (i) 2 (ii) 4 (iii) 6 (iv) 8

- A. 2
- B. 4
- C. 6
- D. 8

Answer: D

- 12. The equation of the parabola with focus
- (0,0) and directrix x + y 4 = 0 is

A.
$$x^2 + y^2 - 2xy + 8x + 8y = 0$$

$$\mathsf{B.}\, x^2 + y^2 - 2xy + 8x + 8y - 16 = 0$$

C.
$$x^2 + y^2 + 8x + 8y - 16 = 0$$

D.
$$x^2 + y^2 + 2xy - 8x - 8y + 16 = 0$$

Answer: B

13. The focus of the parabola
$$y^2-x-2y+2=0$$
 is (i) $\left(\frac{5}{4},1\right)$ (ii)

$$\left(rac{1}{4},1
ight)$$
 (iii) $\left(rac{3}{4},1
ight)$ (iv) (1,1)
A. $\left(rac{5}{4},1
ight)$

 $\mathsf{B.}\left(\frac{1}{4},1\right)$

 $\mathsf{C.}\left(\frac{3}{4},1\right)$

D. (1,1)

Answer: A

14. The equation of the directrix of the parabola $x^2-4x-8y+12=0$ is

A.
$$y = 0$$

B.
$$x - 1 = 0$$

$$C. y + 1 = 0$$

D.
$$x + 1 = 0$$

Answer: C

15. The equation $x = t^2 + 1$ and y = 2t + 1,

where t is any real number, are the parametric

equation of the parabola

(i)
$$y^2 - 4x - 2y + 5 = 0$$
 (ii)

$$y^2 + 4x - 2y + 5 = 0$$
 (iii) $y^2 - 4x + 2y + 3 = 0$ (iv)

(iv)

$$y^2 - 4x - 2y - 5 = 0$$

A.
$$y^2 - 4x - 2y + 5 = 0$$

B.
$$y^2 + 4x - 2y + 5 = 0$$

C.
$$y^2 - 4x + 2y + 3 = 0$$

D.
$$y^2 - 4x - 2y - 5 = 0$$

Answer: A

Watch Video Solution

16. If the latus rectum of an ellipse is equal to half of minor axis, then its eccentricity is

A. (a)
$$\frac{3}{2}$$

B. (b)
$$\frac{1}{\sqrt{2}}$$
 C. (c) $\frac{\sqrt{3}}{2}$

C. (c)
$$\frac{\sqrt{3}}{2}$$

D. (d)
$$\frac{1}{2}$$

Answer: C

Watch Video Solution

17. If the eccentricity of and ellipse is $\frac{5}{8}$ and the distance between its foci is 10, then length of its latus rectum is

A. (a)
$$\frac{39}{4}$$

B. (b)
$$\frac{39}{2}$$

C. (c)
$$\frac{23}{2}$$

D. (d)
$$\frac{23}{4}$$

Answer: A

Watch Video Solution

18. The equation of ellipse whose foci are $(\pm 3,0)$ and length of semi-major axis is 4 is

A. A.
$$\frac{x^2}{7} + \frac{y^2}{16} = 1$$

B. B.
$$\frac{x^2}{16} + \frac{y^2}{7} = 1$$

C. C.
$$\displaystyle \frac{x^2}{9} + \frac{y^2}{25} = 1$$

D. D.
$$\displaystyle \frac{x^2}{9} + \displaystyle \frac{y^2}{25} = 1$$

Answer: B

Watch Video Solution

19. The equation of ellipse whose vertices are

$$(\pm 5,0)$$
 and foci are $(\pm 4,0)$ is (i)

$$rac{x^2}{16} + rac{y^2}{9} = 1$$
 (ii) $rac{x^2}{9} + rac{y^2}{16} = 1$ (iii)

$$rac{x^2}{25} + rac{y^2}{9} = 1$$
 (iv) $rac{x^2}{9} + rac{y^2}{25} = 1$

A.
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

B.
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$

C.
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

D.
$$\frac{x^2}{9} + \frac{y^2}{25} = 1$$

Answer: C

Watch Video Solution

20. The length of latus rectum of the ellipse

$$3x^2+y^2=12$$
 is (i) 4 (ii) 3 (iii) 8 (iv) $\dfrac{4}{\sqrt{3}}$

A. 4

B. 3

C. 8

D.
$$\frac{4}{\sqrt{3}}$$

Answer: D

Watch Video Solution

21. The equation of the hyperbola whose foci

are $(0,\ \pm 13)$ and length of conjugate axis is

24 is (i) $144y^2 - 25x^2 = 3600$ (ii)

 $144x^2 - 25y^2 = 3600$ (iii)

 $25x^2 - 144y^2 = 3600 (iv)$

 $25y^2 - 144x^2 = 3600$

A.
$$144y^2 - 25x^2 = 3600$$

$$\mathsf{B.}\,144x^2-25y^2=3600$$

$$\mathsf{C.}\,25x^2-144y^2=3600$$

D.
$$25y^2 - 144x^2 = 3600$$

Answer: A

Watch Video Solution

22. The equation of the hyperbola with centre at the origin the length of transverse axis 6 and one focus is (0,4) is (i) $9x^2-7y^2=63$ (ii)

$$7x^2 - 9y^2 = 63$$

 $7y^2 - 9x^2 = 63$ (iii) $9y^2 - 7x^2 = 63$ (iv)

A.
$$9x^2 - 7y^2 = 63$$

B.
$$7y^2 - 9x^2 = 63$$

$$\mathsf{C.}\, 9y^2 - 7x^2 = 63$$

D.
$$7x^2 - 9y^2 = 63$$

Watch Video

Answer: B

23. The equation of the hyperbola whose foci are $(\pm 4,0)$ and length of latus rectum is 12 is

A. A.
$$\frac{x^2}{12} - \frac{y^2}{4} = 1$$

B. B.
$$\frac{y^2}{4} - \frac{x^2}{12} = 1$$

C. C.
$$\frac{y^2}{12} - \frac{x^2}{4} = 1$$

D. D.
$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$

Answer: D

24. The equation of the hyperbola whose vertices are at $(0, \pm 6)$ and eccentricity = $\frac{5}{2}$ is

(i)
$$16x^2 - 9y^2 = 576$$
 (ii) $16y^2 - 9x^2 = 576$

(iii) $9x^2-16y^2=576$ (iv) $9y^2-16x^2=576$

A.
$$16x^2 - 9y^2 = 576$$

$$\mathsf{B.}\, 16y^2 - 9x^2 = 576$$

$$\mathsf{C.}\, 9x^2 - 16y^2 = 576$$

D.
$$9y^2 - 16x^2 = 576$$

Answer: B

25. The difference between the lengths of the major axis and the latus rectum of an ellipse is (i) ae (ii) 2ae (iii) ae^2 (iv) $2ae^2$

A. ae

B. 2ae

 $\mathsf{C}.\,ae^2$

D. $2ae^2$

Answer: D

26. The sum of focal distances of any point on the ellipse $9x^2 + 16y^2 = 144$ is

A. 32 nits

B. 18 units

C. 16 units

D. 8 units

Answer: D

27. The eccentricity of the hyperbola whose latus-rectum is 8 and length of the conjugate axis is equal to half the distance between the foci, is

A.
$$\sqrt{rac{9}{5}}$$

$$\mathsf{B.}\,2\sqrt{\frac{1}{9}}$$

C.
$$3\sqrt{\frac{1}{8}}$$

Answer: B

28. The eccentricity of the conic

$$9x^2 + 25y^2 - 18x - 100y = 116$$
 is

A. A.
$$\frac{3}{5}$$

$$\mathsf{B.\,B.}\;\frac{16}{25}$$

C. C.
$$\frac{4}{5}$$

D. D.
$$\frac{9}{25}$$

Answer: C

Watch Video Solution

29. The length of latus-rectum of the hyperbola $x^2-2y^2-2x+8y-1=0$ is

(i)
$$\sqrt{6}$$

(ii)
$$4\sqrt{3}$$

A.
$$\sqrt{6}$$

$$\mathsf{B.}\,4\sqrt{3}$$

D. 3

Answer: B

Watch Video Solution

30. If the equation
$$\dfrac{x^2}{3-\lambda}+\dfrac{y^2}{\lambda-8}+1=0$$

represents an ellipse, then

(i)
$$\lambda < 8$$

(ii)
$$\lambda > 3$$

(iii)
$$3 < \lambda < 8$$

(iv)
$$\lambda < 3$$
 or $\lambda > 8$

A.
$$\lambda < 8$$

B.
$$\lambda > 3$$

$$\mathsf{C.}\,3 < \lambda < 8$$

D.
$$\lambda < 3$$
 or $\lambda > 8$

Answer: C

Watch Video Solution

31. If the line x + y = 1 touches the parabola $y^2 = kx$, then the value of k is

A. A. 4

B, B, -4

C. C. 2

Watch Video Solution

 $9x^2 + 16y^2 = 144$, then

(i) k = 5 only

32. If the line y = x + k touches the ellipse

D. D. - 2

Answer: B

(ii)
$$k = -5$$
 only

(iii)
$$k = 5, -5$$

A.
$$k = 5$$
 only

B.
$$k = -5$$
 only

C.
$$k = 5, -5$$

D. none of these

Answer: C

$$x^2+4xy+4y^2-3x-6=0$$
 represents

- A. A. a circle
- B. B. a parabola
- C. C. an ellipse
- D. D. a hyperbola

Answer: B

