

MATHS

BOOKS - S CHAND MATHS (ENGLISH)

MODEL TEST PAPER -13

1. In set -builder form the null set is represented by

A. $\{\}$

 $\mathsf{B.}\,\phi$

 $\mathsf{C}.\left\{ x|x\neq x|\right\}$

D.
$$\{x|x
eq = x|\}$$

Answer: C

C. 0

D. None of these

Answer: B

3. If $\cos 18^\circ - \sin 18^\circ = k \sin 27^\circ,\,$ then k =

A.
$$\frac{1}{\sqrt{2}}$$

B.
$$\sqrt{2}$$

C.
$$\frac{2}{2\sqrt{2}}$$

D.
$$2\sqrt{2}$$

Answer: B

Watch Video Solution

4. If A_1 and A_2 are two AMs between a and b then $(2A_1 - A_2)(2A_2 - A_1) =$ A. $\frac{a}{b}$ $\mathsf{B.}\,\frac{b}{a}$

C. ba

 $\mathsf{D}.\,a^2b$

Answer: C

Watch Video Solution

5. If
$$(1+i)(1+2i)(1+3i)\dots(1+ni) = x+iy$$
, then $2,5,10\dots(1+n^2) = x^k + y^k$ The value of k is :

A. 1

B. 2

C. 4

D. None of these

Answer: A

7. Solution of $|3x-2| \leq rac{1}{2}$ is

$$A. \left[\frac{1}{2}, \frac{5}{6}\right]$$
$$B. \left(\frac{1}{2}, \frac{5}{6}\right)$$
$$C. \left(\frac{5}{6}, \frac{1}{2}\right)$$
$$D. \left[\frac{5}{6}, \frac{1}{2}\right]$$

Answer: A

A.
$$90^\circ$$

B. 60°

C. 45°

D. $180\,^\circ$

Answer: A

Watch Video Solution

9. If (x, 3) and (3,5) are the extremities of a diameter of a circle with centre at (2,y), then the values of x and y are

A. x= 3, y = 1

B. x= 1, y = 4

C. x= 8, y = 2

D. None of these

Answer: A

- $\mathsf{B.}-1$
- $\mathsf{C.}\pm 3$
- $\mathsf{D}.\,0$

Answer: C

11. If $f\!:\!R o R$ defined by $f(x)=x^2+1$, then find $f^{-1}(-3)$

Watch Video Solution

12. A round table coference is to be held between 20 delegates. How many seating arrangements are possible if two particular delegates are always to sit together .

13. If the middle term in the expansion of
$$\left(rac{2}{3}x^2-rac{3}{2x}
ight)^{20}is^{20}C_{10}x^k$$
 , then find the value of k .

17. Two finite sets have m and n elements respectively . The total number of subsets of first set is 56 more than the total number of subsets of the second. Find the values of m and

n.

22. Form a quadratic equations defined over rational coefficients whose one root is sin 18°

23. Find the domain of the functions
$$f(x) = \frac{1}{\sqrt{4x^2 - 1}} + \log_e \left(x \left(x^2 - 1 \right) \right)$$

24. If
$$\cos \theta = \frac{\cos \phi - e}{1 - e \cos \phi}$$
, show that tan
 $\frac{\theta}{2} = \pm \sqrt{\frac{1 + e}{1 - e}} \tan \frac{\phi}{2}$
Watch Video Solution

25. Show that
$$rac{\sin 5A+2\sin 8A+\sin 11A}{\sin 8A+2\sin 11A+\sin 14A}=rac{\sin 8A}{\sin 11A}$$

26. Using principle of mathematical induction , prove that n^3-7n+3 is divisible by 3 , for all n belongs to N .

Watch Video Solution

28. Evaluate
$$\lim_{x
ightarrow\pi} \, rac{\sin 3x - 3 \sin x}{\left(\pi - x
ight)^3}$$

29. Show that if A and G .are A.M. and G.M. between two positive numbers , then the numbers are $A\pm\sqrt{A^2-G^2}$

30. If the sum to infinity of the series

$$1 - (1+d)rac{1}{3} + (1+2d)rac{1}{9} - (1+3d). rac{1}{27} + \dots$$
 is $rac{9}{16}$

, find d.

Watch Video Solution

31. For what values of a is the inequality $\displaystyle rac{x^2+ax-2}{x^2-x+1} < 2$

satisfied for all real values of x?

32. A line is drawn perpendicular to5x = y + 7. Find the equation of lines if the area of the triangle formed by this line with coordinate axes is 5sq. Units.

Watch Video Solution

33. Find the locus of the point of intersections of perpendicular tangents to the circle $x^2 + y^2 = a^2$

Watch Video Solution

34. The number of faults on the surface of each of 1000 tiles were distributed as follows:

Number of faults	0	1	2	3	4	5
Frequency	760	138	67	25	8	2

Calculate coefficient of variations:

Section **B**

1. A line of length a+b moves in such a way that its ends are always on two fixed perpendicular straight lines. Then the locus of point on this line which devides it into two portions of length a and b ,is :

A. A. Parabola

B. B. Circle

C. C. Ellipse

D. D. Hyperbola

Answer: C

2. The parabola $y^2=2ax$ passes through the point

 $(\,-2,1)$.The length of its latus rectum is

A. A. 2 units

B.B.
$$\frac{1}{2}$$
 units

C.C.4 units

D. D.
$$\frac{1}{4}$$
 units

Answer: B

3. Verify , whether the line y = 2x + 1 is a tangent to the ellipse $3x^2 + 2y^2 = 6$.

Watch Video Solution

4. What is the locus of a point for which z=c?

5. Re-write the statement with 'If and only if' " If a rectangle

is a square , then all its four sides are equal "

6. Let p: "X can type ," and let q: " X takes shorthand . " Write

the following statement in symbolic form :

(i) X can neither type nor take shorthand

(ii) It is not true that X can type and take shorthand.

> Watch Video Solution

7. Write the converse and contrapositive for the statement

 $p \Rightarrow q.$

8. Find the equation of the parabola whose vertex is (3,4) and focus is (5,4)

9. Find the equation to the hyperbola whose foci, are (6,4)

and (-4,4) and eccentricity is 2.

Watch Video Solution

10. If A,B are the points (-2,2,3),(13,-3,13) respectively, find the

locus of P such that 3|PA| = 2|PB|

1. If $\sigma_x=10,\;\sigma_y=10,\;$ then the value of Cov(x,y) is

A. 100

B. $\sqrt{10}$

C. 10

 $\mathsf{D}.\,0$

Answer: A

2. If
$$u = \frac{x-3}{2}$$
 and $v = \frac{y-2}{3}$, then $cov(u,v) = k cov(x,y)$.

The value of k is

B.
$$\frac{1}{6}$$

C. 5
D. $\frac{1}{5}$

A. 6

Answer: B

3. Find the Spearmen 's rank correlation coeffcient ,given :

$$n=10,\ \sum \left|d_x-d_y
ight|^2=30$$

4. If
$$\sum p_1\omega=344$$
 and $\sum p_2\omega=408$, then find the price

index number.

Watch Video Solution

5. If
$$\sum I\omega=3510,$$
 $\sum \omega=23+x$ and index number is

135, find the value of x.

Watch Video Solution

6. Find r(x,y) if Cov (x,y) = -165 , Var(x)= 2.25 and Var(y)= 144.

7. The Spearman's rank correlation coefficient $=\frac{9}{11}$, given

 $\sum d^2 = 30$. Find the number of observation.

Watch Video Solution

8. Find the median

Saving in 7 (less than)	10	20	30	40	50	60	70	80
Cumulative frequency	15	35	64	84	96	120	192	256

9. The following table gives frequency distribution of Maze -Running Times (recorded in nearest second) for 100 " Maze -Dull "rats.

Time main	61-67	63 - 74	75 - 81	82 - 88	89 - 95	96-102
Frequency	23	38	17	12	6	4

Calculate the mode.

10. The following table gives the numbers of failures of commercial industries in a country during the years 2000 to 2015

Year	2000	2001	2002	2003	20	04
Number of failures	23	26	28	32	20	
Year	2005	2006	2007	2008	2009	
Number of failures and	12	12	10	9	13	
Year 🤎 🎬 🚟	2010	2011	2012	2013	2014	2015
Number of failures	11	14	12	9	3	1

Draw a graph illustrating these figure.

Calculate the 4 yearly moving averages and plot them on the

same graph.

