© "doubtnut
 India's Number 1 Education App

MATHS

BOOKS - S CHAND MATHS (ENGLISH)

PARABOLA

Examples

1. For the following parabola, find the coordinates if the focus, length of the latus
rectum, equation of the axis and the equation
of the directrix.

$$
y^{2}=18 x
$$

- Watch Video Solution

2. For the following parabolas, find the coordinates if the focus, length of the lutus rectum, equation of the axis and the euation of the directrices.
$y^{2}=-16 x$

D Watch Video Solution

3. For the following parabolas, find the coordinates of the focus, length of the lutus rectum, equation of the axis and the equation of the directrices.
$x^{2}=10 y$

D Watch Video Solution

4. For the following parabolas, find the coordinates if the focus, length of the lutus rectum, equation of the axis and the euation
of the directrices.
$x^{2}=-7 y$

- Watch Video Solution

5. For the following parabolas, find the coordinates if the focus, length of the latus rectum equation if the axis and the equation if the directrices.
$3 x^{2}=8 y$
6. For the following parabolas, find the coordinates if the focus, length of the latus rectum equation if the axis and the equation if the directrices.
$4 y^{2}=15 x$

D Watch Video Solution

7. Find the quation of the parabolas with vertices at the origin and satisfying the following conditions.

Focus at $(a, 0)$
8. Find the quation of the parabolas with vertices at the origin and satisfying the following conditions.

Focus at $(0, a)$

- Watch Video Solution

9. Find the quation of the parabolas with
vertices at the origin and satisfying the
following conditions.

Focus at $(0,-a)$

D Watch Video Solution

10. Find the equation of the parabola with vertices at the origin and satisfying the following conditions.

Directrix $x=7$
11. Find the equation of the parabola with vertices at the origin and satisfying the following conditions.

Directrix $y=5$

- Watch Video Solution

12. Find the quation of the parabolas with
vertices at the origin and satisfying the following conditions.

Passing through $(-3,7)$ and axis along the x-axis.

D Watch Video Solution

13. Find the quation of the parabolas with vertices at the origin and satisfying the following conditions.

Passing through $(4,9)$ and axis along the y axis.
14. Find the quation of the following parabolas.

Directrix $x=0$, focus at $(6,0)$

D Watch Video Solution

15. The equation of axis of the parabola having
focus $(2,3)$ and directrix $x-4 y+3=0$ is

- Watch Video Solution

16. Find the quation of the following parabolas.

Focus (a, b), directrix $\frac{x}{a}+\frac{y}{b}=1$

D Watch Video Solution

17. Find the equation of the parabola whose
vertex is at the point $(-2,2)$ and whose
focus is $(-6,-6)$.

D Watch Video Solution
18. Derive the equation of the parabola with its
vertex at $(3,2)$ and its focus at $(5,2)$.

- Watch Video Solution

19. Determine the equation of the parabola with its vertex at the point $(2,3)$, its axis parallel to the y-axis and which passes through the point $(4,5)$.
20. Find the equation of the parabola with its axis parallel to the x-axis and which passes through the point
$(-2,1),(1,2)$ and $(-3,3)$.

- Watch Video Solution

21. Derive the equation of the parabola with
latux rectum joining the points $(3,5)$ and $(3,-3)$.
22. Find the equation of the parabola whose vertex and focus lie on the y-axis at distance b and b ' respectively from the origin.

D Watch Video Solution

23. Transform the following parabolas to the standard forms:
$(y-2)^{2}=2(x+1)$

24. Transform the following parabolas to the

 standard forms:$(x+3)^{2}=8(y-5)$

- Watch Video Solution

25. Find the vertex, focus and directix and latus rectum of the parabola.
$(y+3)^{2}=2(x+2)$

- Watch Video Solution

26. Find the vertex, focus, and directrix axis of the parabola $x^{2}+4 y+3 x=2$. Sketch the curve.

D Watch Video Solution

27. Find the vertex,focus, directrix and axis of
the parabola and length of its latus rectum
$5 x+30 x+2 y+59=0$.
28. Find the equation of the parabola whose
vertex is at the point $(-2,2)$ and whose focus is $(-6,-6)$.

- Watch Video Solution

2. Find the equation of a parabola whose vertex at $(-2,3)$ and the focus at $(1,3)$.
3. Find the equation of the parabola whose focus is $(1,-1)$ and whose vertex is 2,1 .

Also, find its axis and latus-rectum.

D Watch Video Solution

Exercise 23

1. The focus at $(10,0)$ the directrix $x=-10$.

- Watch Video Solution

2. The focus at $(0,5)$ the directrix $y=-5$.

- Watch Video Solution

3. The focus at $(-3,0)$ the directrix $x+5-0$.

- Watch Video Solution

4. The focus at $(2,-3)$ the directrix $x+5=0$.

Watch Video Solution

5. The focus at $(1,1)$ the directrix $x-y=3$.

- Watch Video Solution

6. The vertex at the origin, the axis along the x axis, and passes through $(-3,6)$.
7. The focus at $(-2,-1)$ and the latus rectum joins the points $(-2,2)$ and ($-2,-4$).

- Watch Video Solution

8. Find the equation of a parabola whose vertex at $(-2,3)$ and the focus at $(1,3)$.

- Watch Video Solution

9. Find the equation of parabola if it's vertex is at $(0,0)$ and the focus at $(0,1)$.

D Watch Video Solution
10. Find the equation of the parabola whose vertex is at $(0,0)$ and the focus is at $(0, a)$.

- Watch Video Solution

11. The axis parallel to the x-axis, and the parabola passes through
$(3,3),(6,5), \quad$ and $(6,-3)$.

- Watch Video Solution

12. The axis parallel to the x-axis, and the parabola passes through the points $(4,5),(-2,11), \quad$ and $(-4,21)$.
13. The parabola $y^{2}=4 p x$ passes thrugh the point $(3,-2)$. Obtain the length of the latus rectum and the coordinates of the focus.

- Watch Video Solution

14. Prove that the equation
$y^{2}+2 a x+2 b y+c=0 \quad$ represents a
parabola whose axis is parallel to the axis of x.
Find its vertex.
15. Of the parabola, $4(y-1)^{2}=-7(x-3)$
find
The length of the latus rectum.

- Watch Video Solution

16. Of the parabola, $4(y-1)^{2}=-7(x-3)$
find
The coordinates of the focus and the vertex.
17. Find the vertex, focus, and directrix of the following parabolas:
$y^{2}-2 y+8 x-23=0$

- Watch Video Solution

18. Find the vertex, focus, and directrix of the
following parabolas:
$x^{2}+8 x+12 y+4=0$
19. Find the vertex, focus and directix of the parabola $(x-h)^{2}+4 a(y-k)=0$.

D Watch Video Solution

20. Find the equatin to the parabola whose axis is parallel to the y-xis and which passes through the point
$(0,4),(1.9), \quad$ and $(-2,6)$ and determine its latus rectum.

D Watch Video Solution

21. Find the coordinates of the point on the parabola $y^{2}=8 x$ whose focal distance is 8 .

D Watch Video Solution

22. If the ordinate of a point on the parabola
$y^{2}=4 a x$ is twice the latus rectum, prove that
the abscissa of this point is twice the ordinate.

D Watch Video Solution
23. Find the equation of the parabola whose focus is at the origin, and whose directrix is the line $y-x=4$.Find also the length of the latus rectum, the equation of the axis, and the coordinates of the vertex.

D Watch Video Solution

24. The directrix of a conic section is the straight line $3 x-4 y+5-0$ and the focus is
$(2,3)$. If the eccontricity e is 1 , find the
equation to the coin section. Is the coin sction
a parabola?

D Watch Video Solution
25. Find the equation to the parabola whose focus is $(-2,1)$ and directrix is $6 x-3 y=8$.

- Watch Video Solution

26. The length of the latus rectum of the parabola whose focus is $(3,3)$ and directrix is
$3 x-4 y-2=0$ is.
A. 2
B. 1
C. 4
D. None of these

Answer: A

- Watch Video Solution

Chapter Test

1. The equation of the diirectrix of the parabola is $3 x+2 y+1-0$. The focus is $(2,1)$. Find the equation of the parabola.

D Watch Video Solution

2. The point $(0,4)$ and $(0,2)$ are the vertex and focus of a parabola. Find the equation of the parabola.
3. Find the equation of th parabola with latus rectum joining points $(4,6)$ and $(4,-2)$.

- Watch Video Solution

4. Find the equation of the parabola whose
focus is $(-1,-2)$ and the equation of the directrix is given by $4 x-3 y+2=0$. Also find the equation of the axis.
5. Find the equation of the parabola if its
vertex is at $(0,0)$, passes through $(5,2)$ and is
symmetric w.r.t. y-axis.

D Watch Video Solution

6. The parabola $y^{2}=4 a x$ passes through the point $(2,-6)$. Find the length of its latus rectum.
7. Find the coordinates of the vertex and the focus of the parabola $y^{2}=4(x+y)$.

- Watch Video Solution

8. Find the focus, the equation of the directrix and the length of latus rectum of the parabola $y^{2}+12=4 x+4 y$.

D Watch Video Solution

