

MATHS

BOOKS - S CHAND MATHS (ENGLISH)

PARABOLA

1. For the following parabola, find the coordinates if the focus, length of the latus rectum, equation of the axis and the equation

of the directrix.

$$y^2 = 18x$$

Watch Video Solution

2. For the following parabolas, find the coordinates if the focus, length of the lutus rectum, equation of the axis and the euation of the directrices.

$$y^2=\ -16x$$

3. For the following parabolas, find the coordinates of the focus, length of the lutus rectum, equation of the axis and the equation of the directrices.

 $x^2 = 10y$

Watch Video Solution

4. For the following parabolas, find the coordinates if the focus, length of the lutus rectum, equation of the axis and the euation

of the directrices.

$$x^2 = -7y$$

Watch Video Solution

5. For the following parabolas, find the coordinates if the focus, length of the latus rectum equation if the axis and the equation if the directrices.

$$3x^2 = 8y$$

6. For the following parabolas, find the coordinates if the focus, length of the latus rectum equation if the axis and the equation if the directrices.

 $4y^2 = 15x$

Watch Video Solution

7. Find the quation of the parabolas with vertices at the origin and satisfying the following conditions.

Focus at (a, 0)

8. Find the quation of the parabolas with vertices at the origin and satisfying the following conditions.

Focus at (0, a)

Watch Video Solution

9. Find the quation of the parabolas with vertices at the origin and satisfying the

following conditions.

Focus at (0, -a)

Watch Video Solution

10. Find the equation of the parabola with vertices at the origin and satisfying the following conditions.

Directrix x = 7

11. Find the equation of the parabola with vertices at the origin and satisfying the following conditions.

Directrix y = 5

Watch Video Solution

12. Find the quation of the parabolas with vertices at the origin and satisfying the following conditions.

Passing through (-3,7) and axis along the

x-axis.

13. Find the quation of the parabolas with vertices at the origin and satisfying the following conditions.

Passing through (4, 9) and axis along the y-

14. Find the quation of the following parabolas.

Directrix x = 0, focus at (6, 0)

Watch Video Solution

15. The equation of axis of the parabola having

focus (2,3) and directrix x-4y+3=0 is

16. Find the quation of the following parabolas. Focus (a, b), directrix $\frac{x}{a} + \frac{y}{b} = 1$ Watch Video Solution

17. Find the equation of the parabola whose vertex is at the point (-2, 2) and whose focus is (-6, -6).

18. Derive the equation of the parabola with its

vertex at (3, 2) and its focus at (5, 2).

19. Determine the equation of the parabola with its vertex at the point (2, 3), its axis parallel to the y-axis and which passes through the point (4, 5).

20. Find the equation of the parabola with its axis parallel to the x-axis and which passes through the point (-2, 1), (1, 2) and (-3, 3).

Watch Video Solution

21. Derive the equation of the parabola with latux rectum joining the points (3, 5) and (3, -3).

22. Find the equation of the parabola whose vertex and focus lie on the y-axis at distance b and b' respectively from the origin.

23. Transform the following parabolas to the

standard forms:

$$\left(y-2
ight)^2=2(x+1)$$

24. Transform the following parabolas to the

standard forms:

$$(x+3)^2 = 8(y-5)$$

Watch Video Solution

25. Find the vertex, focus and directix and latus rectum of the parabola.

$${(y+3)}^2=2(x+2)$$

26. Find the vertex, focus , and directrix axis of the parabola $x^2 + 4y + 3x = 2$. Sketch the curve.

27. Find the vertex, focus, directrix and axis of the parabola and length of its latus rectum 5x + 30x + 2y + 59 = 0.

1. Find the equation of the parabola whose vertex is at the point (-2, 2) and whose focus is (-6, -6).

Watch Video Solution

2. Find the equation of a parabola whose vertex at (-2, 3) and the focus at (1, 3).

3. Find the equation of the parabola whose focus is (1, -1) and whose vertex is 2, 1. Also, find its axis and latus-rectum.

1. The focus at (10, 0) the directrix x = -10.

2. The focus at (0, 5) the directrix y = -5.

4. The focus at (2, -3) the directrix x + 5 = 0.

9. Find the equation of parabola if it's vertex is

at (0, 0) and the focus at (0, 1).

> Watch Video Solution

10. Find the equation of the parabola whose vertex is at (0, 0) and the focus is at (0, a).

12. The axis parallel to the x-axis, and the parabola passes through the points (4, 5), (-2, 11), and (-4, 21).

13. The parabola $y^2 = 4px$ passes thrugh the point (3, -2). Obtain the length of the latus rectum and the coordinates of the focus.

parabola whose axis is parallel to the axis of x.

Find its vertex.

Watch Video Solution

15. Of the parabola, $4(y-1)^2 = -7(x-3)$

find

The length of the latus rectum.

Watch Video Solution

16. Of the parabola, $4(y-1)^2 = -7(x-3)$

find

The coordinates of the focus and the vertex.

17. Find the vertex, focus, and directrix of the

following parabolas:

$$y^2 - 2y + 8x - 23 = 0$$

Watch Video Solution

18. Find the vertex, focus, and directrix of the

following parabolas:

$$x^2 + 8x + 12y + 4 = 0$$

19. Find the vertex, focus and directix of the parabola $\left(x-h
ight)^2+4a(y-k)=0.$

Watch Video Solution

20. Find the equatin to the parabola whose axis is parallel to the y-xis and which passes through the point (0, 4), (1.9), and (-2, 6) and determine its latus rectum.

21. Find the coordinates of the point on the parabola $y^2 = 8x$ whose focal distance is 8.

Watch Video Solution

22. If the ordinate of a point on the parabola $y^2 = 4ax$ is twice the latus rectum, prove that the abscissa of this point is twice the ordinate. Watch Video Solution

23. Find the equation of the parabola whose focus is at the origin, and whose directrix is the line y - x = 4. Find also the length of the latus rectum, the equation of the axis, and the coordinates of the vertex.

Watch Video Solution

24. The directrix of a conic section is the straight line 3x - 4y + 5 - 0 and the focus is (2, 3). If the eccontricity e is 1, find the

equation to the coin section. Is the coin sction

a parabola?

26. The length of the latus rectum of the parabola whose focus is (3, 3) and directrix is

3x - 4y - 2 = 0 is.

 $\mathsf{A.}\ 2$

B.1

 $\mathsf{C.}\,4$

D. None of these

Answer: A

Watch Video Solution

Chapter Test

1. The equation of the diirectrix of the parabola is 3x + 2y + 1 - 0. The focus is (2, 1). Find the equation of the parabola.

Watch Video Solution

2. The point (0, 4) and (0, 2) are the vertex and focus of a parabola. Find the equation of the parabola.

3. Find the equation of th parabola with latus

rectum joining points (4, 6) and (4, -2).

4. Find the equation of the parabola whose focus is (-1, -2) and the equation of the directrix is given by 4x - 3y + 2 = 0. Also find the equation of the axis.

5. Find the equation of the parabola if its vertex is at (0, 0), passes through (5, 2) and is symmetric w.r.t. y-axis.

6. The parabola $y^2 = 4ax$ passes through the point (2, -6). Find the length of its latus rectum.

7. Find the coordinates of the vertex and the

focus of the parabola $y^2=4(x+y).$

8. Find the focus, the equation of the directrix and the length of latus rectum of the parabola $y^2 + 12 = 4x + 4y.$