

MATHS

BOOKS - S CHAND MATHS (ENGLISH)

PROPERTIES OF TRIANGLE

1. In a
$$\triangle ABC$$
, a = 2, b = 3 and sinA = $\frac{2}{3}$, find $\angle B$.

Watch Video Solution

2. The angles of a triangle ABC are in A.P. and $b: c = \sqrt{3}: \sqrt{2}$, find $\angle A$.

4. In any ΔABC , prove that $a(b\cos C - c\cos B) = b^2 - c^2$.

6. Find the area of a $\triangle ABC$ in which $\angle A = 30^{0}, b = 6cm, c = 2cm$.

(i)
$$an \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}.$$

5. If $a \cos A = b \cos B$, then either the triangle is isosceles or right

angled.

1. In ΔABC ,

if a = 2, b = 3, c = 4, prove that
$$\cos A = \frac{7}{8}$$
.

2. In ΔABC ,

if the sides are 7, $4\sqrt{3}$ and $\sqrt{13}$ cm, prove that the smallest angle is 30° .

Watch Video Solution

3. In ΔABC ,

if a = 9, b = 8, c = 4, prove that $6 \cos C = 4 + 3 \cos B$.

Watch Video Solution

4. In $\triangle ABC$,

The sines of the angles of a triangle are in the ratio of 4 : 5 : 6, prove that

6. In $\triangle ABC$,

If in a
$$\Delta ABC$$
, a = 6, b = 3 and $\cos(A-B)=rac{4}{5}$, find its area.

7. In $\triangle ABC$,

In a triangle ABC, $\angle C = 60^{\circ}$ and $\angle A = 75^{\circ}$. If D is a point on AC such

that the area of the ΔBAD is $\sqrt{3}$ times the area of the ΔBCD , find the

$\angle ABD.$

8. In any
$$\Delta ABC$$
, prove that

 $\frac{\sin A}{\sin(A+B)} = \frac{a}{c}$

Watch Video Solution

9. In any ΔABC , prove that

$$rac{a-b}{a+b} = rac{ an rac{1}{2}(A-B)}{ an rac{1}{2}(A+B)}$$

Watch Video Solution

10. In any ΔABC , prove that

$$ac\cos B - bc\cos A = a^2 - b^2$$

 $\frac{\sin(A-B)}{\sin(A+B)} = \frac{a^2 - b^2}{c^2}$

Watch Video Solution

12. In any ΔABC , prove that

 $a(\sin B - \sin C) + b(\sin C - \sin A) + c(\sin A - \sin B) = 0$

Watch Video Solution

13. In any ΔABC , prove that

 $a\cos(A+B+C)-b\cos(B+A)-c\cos(A+C)=0$

$$a(\cos C-\cos B)=2(b-c){\cos^2rac{1}{2}A}$$

Watch Video Solution

15. In any
$$\Delta ABC$$
, prove that

$$a\sinrac{1}{2}(B-C)=(b-c)\cosrac{1}{2}A$$

Watch Video Solution

16. In any ΔABC , prove that

$$a\sin\left(rac{A}{2}+B
ight) = (b+c)\sinrac{A}{2}$$

Watch Video Solution

17. In any ΔABC , prove that

$$c^2 = (a-b)^2 \cos^2 rac{1}{2} C + (a+b)^2 \sin^2 rac{1}{2} C$$

 $a\sin(B-C)+b\sin(C-A)+c\sin(A-B)=0$

Watch Video Solution

19. In any
$$\triangle ABC$$
, prove that

$$\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} = \frac{1}{a^2} - \frac{1}{b^2}$$
Watch Video Solution

20. In any ΔABC , prove that

$$rac{1+\cos(A-B)\cos C}{1+\cos(A-C)\cos B} = rac{a^2+b^2}{a^2+c^2}$$

$$ig(b^2-c^2ig){
m cot}\,A+ig(c^2-a^2ig){
m cot}\,B+ig(a^2-b^2ig){
m cot}\,C=0$$

Watch Video Solution

22. In any
$$\Delta ABC$$
, prove that

 $a^3\sin(B-C)\cos ec^2A+b^3\sin(C-A)\cos ec^2B+c^3\sin(A-B)\cos ec^2C=$

Watch Video Solution

23. In any ΔABC , prove that

$$a^3\cos(B-C)+b^3\cos(C-A)+c^3\cos(A-B)=3abc$$

24. In a
$$\triangle ABC$$
, if $\frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c} = \frac{a}{bc} + \frac{b}{ca}$, prove that $\angle A = 90^{\circ}$.

25. In a $\triangle ABC$, AD is the altitude from A. Given $b>c, \angle C=23^\circ$ and $AD=rac{abc}{(b^2-c^2)}$, find $\angle B$.

Watch Video Solution

26. In
$$\Delta ABC, \frac{a^2+b^2}{a^2-b^2}=\frac{\sin(A+B)}{\sin(A-B)}$$
, prove that the triangle is

isosceles or right triangle.

Watch Video Solution

27. If
$$rac{\sin A}{\sin C} = rac{\sin(A-B)}{\sin(B-C)}$$
, prove that a^2, b^2, c^2 are in A.P.

Watch Video Solution

28. If $\sin 2A + \sin 2B = \sin 2C$, prove that $A = 90^{\circ}$ or $B = 90^{\circ}$.

29. If in a triangle
$$ABC, \angle C = 60^0$$
, then prove that $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$.

Watch Video Solution

30. In a
$$\triangle ABC$$
 the angles A, B, C are in A.P. show that $2\cos\frac{A-C}{2} = \frac{a+c}{\sqrt{(a^2-ac+c^2)}}$
Watch Video Solution

31. If the angles A, B, C of ΔABC are in A.P. and $b{:}\,c=\sqrt{3}{:}\,\sqrt{2}$, show that

 $A=75^{\circ}.$

32. If $A=45^{\circ}~~{
m and}~~B=75^{\circ}$, show that $a+c\sqrt{2}=2b.$

33. The angles A, B, C of a triangle are in the ratio 3:5:4, prove that $a + c\sqrt{2} = 2b$.

Watch Video Solution

34. In a
$$\triangle ABC$$
, if $\cos A = \frac{17}{22}$, $\cos C = \frac{1}{14}$, prove that the ratio of the sides is 7:9:11.

Watch Video Solution

35. The angle of a triangle are in the ratio 1 : 2 : 7, prove that the ratio of

the greatest side to the least side is $ig(\sqrt{5}+1ig):ig(\sqrt{5}-1ig).$

36. If the sides of ΔABC in the ratio 4 : 5 : 6, prove that one angle is twice that of the other.

37. Two sides and included angles of a triangle are respectively $3 + \sqrt{3}$, $3 - \sqrt{3}$ and 60° . Show that the remaining elements of the triangle are 105° , 15° , $3\sqrt{2}$.

Watch Video Solution

38. In a
$$\Delta ABC$$
, if $B=3C$, prove that

(i)
$$\cos C = \sqrt{\left(rac{b+c}{4c}
ight)}$$
 (ii) $\sin rac{A}{2} = rac{b-c}{2c}.$