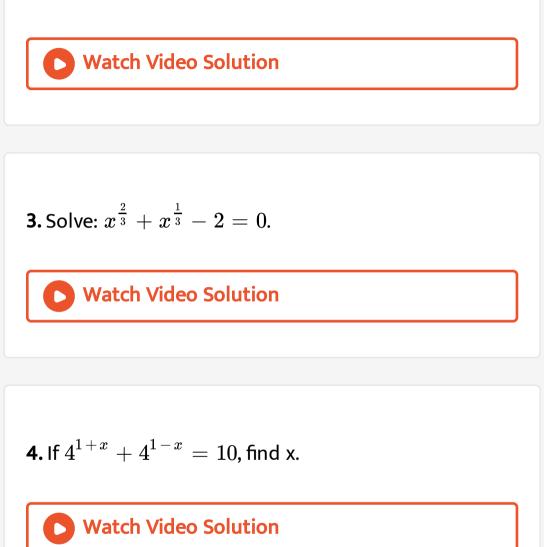


MATHS

BOOKS - S CHAND MATHS (ENGLISH)


QUADRATIC EQUATIONS

1. Solve: $2x^2 + 2x - 3 = 0$, giving your answer

correct to one decimal place.

2. Solve:
$$x^2 + x + 1 = 0$$
.

5. If
$$\sqrt{rac{2x^2+x+2}{x^2+3x+1}}+2.\sqrt{rac{x^2+3x+1}{2x^2+x+2}}-3=0,$$

find x.

6. Solve:
$$(x + 1)(x + 2)(x + 3)(x + 4) + 1 = 0$$
.

7. Examine the nature of the roots of the equations

(i) $2x^2 + 2x + 3 = 0$

(ii)
$$2x^2 - 7x + 3 = 0$$

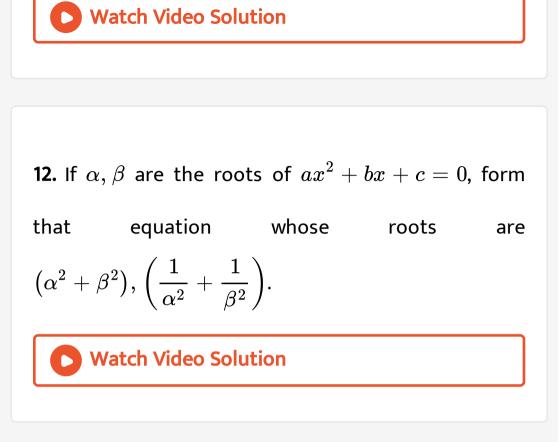
(iii) $x^2 \ _ 5x - 2 = 0$

(iv) $4x^2 - 4x + 1 = 0$

8. If a,b,c are real, then both the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are always (A) positive

(B) negative (C) real (D) imaginary.

9. For what value of m, are the roots of the equation $(3m+1)x^2 + (11+m)x + 9 = 0$ equal ? Real and unequal ?


10. If lpha,eta are roots of $x^2-px+q=0$, find the value

of

- (i) $lpha^2+eta^2$
- (ii) $lpha^3+eta^3$
- (iii) lpha-eta,
- (iv) $lpha^4+eta^4.$

Watch Video Solution

11. If α and β are the roots of $ax^2 + bx + c = 0$, form the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

13. Find the condition that one root of

 $ax^2 + bx + c = 0$ may be four times the other.

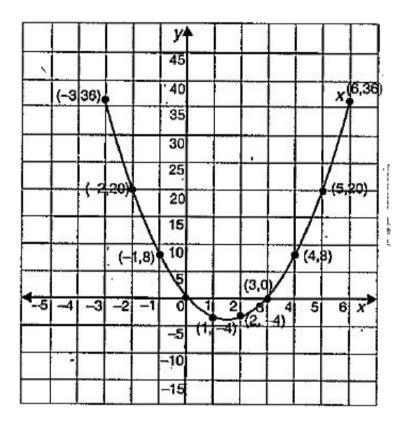
14. Prove that the condition that one root of $ax^2 + bx + c = 0$ may be the square of the other is $b^3 + a^2c + ac^2 = 3abc.$

Watch Video Solution

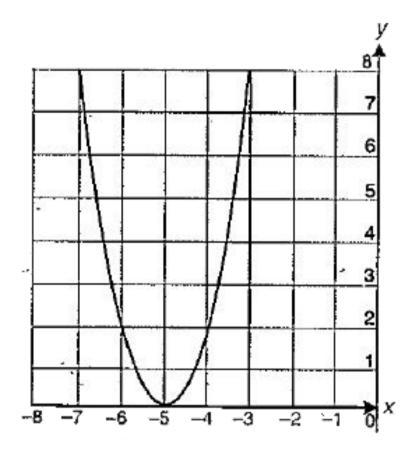
15. For which value of k will the equations $x^2 - kx - 21 = 0$ and $x^2 - 3kx + 35 = 0$ have one

common root ?

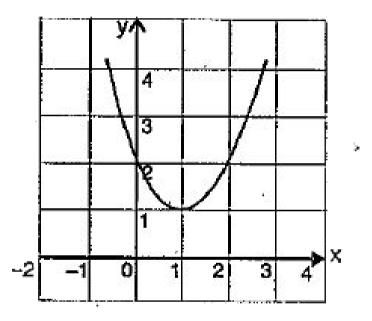
16. If $x^2 + px + q = 0$ and $x^2 + qx + p = 0$ have a common root, prove that either p = q or 1 + p + q = 0.


17. Graph the expression $x^2 + x - 6$.

Watch Video Solution


Watch Video Solution

18. Graph the expression $4 - 5x - x^2$.

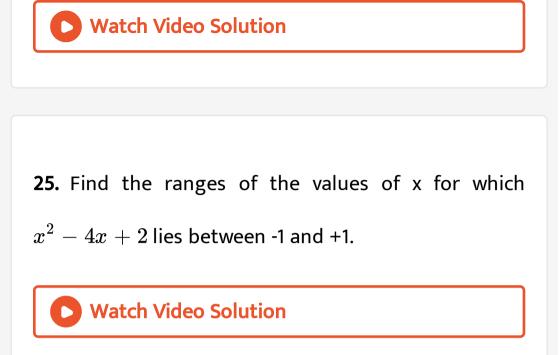

19. state true or false : - The roots x=0 and x=3 of the equation 2x(x - 3) = 0 are the x-intercepts of the graph of y=2x(x-3) as shown in the figure.

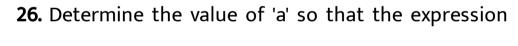
20. State true or false : The two roots x=-5,-5 of the equation $(x + 5)^2 = 0$ is the x-intercept of the graph of $y = (x + 5)^2$ as shown below.

21. The graph of the function $f(x)=x^2 - 2x + 2$ does not touch the x-axis as shown below because the roots are imaginary. Find the roots of the quadratic equation.

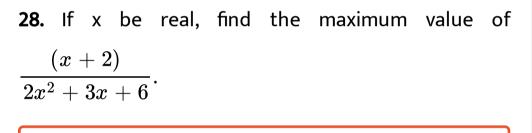
22. (i) Draw a graph of $y=x^2-4x+3$ for $-2\leq x\leq 5.$ (ii) Use the graph to solve the equation $x^2-4x+3=0.$

Watch Video Solution


23. Find the value of $6x^2 - 5x + 1$ for all real value of

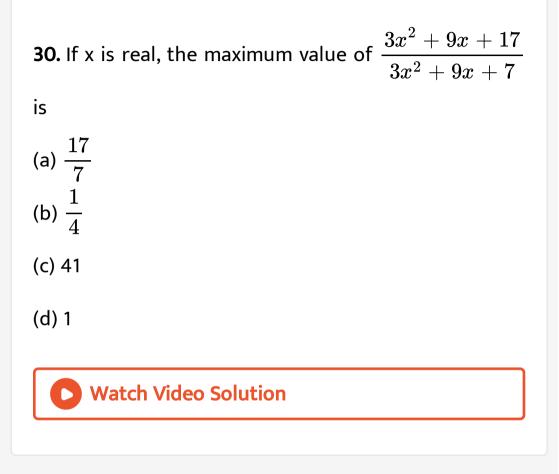

х.

24. Determine the sign of the function $3x^2 - 2x + 1$


for real values of x.

 $x^2-2(a+1)x+4, x\in R$ is always positive.

27. If x is real, prove that the value of the expression $\frac{(x-1)(x+3)}{(x-2)(x+4)}$ cannot be between $\frac{4}{9}$ and 1. **Watch Video Solution**



Watch Video Solution

Match Video Colution

29. If x is real, then find the minimum value of $\frac{x^2 - x + 1}{x^2 + x + 1}$.

Exercise 10 A

1. Find the roots of the equations.

Q.
$$2x^2 + x - 3 = 0$$

2. Find the roots of the equations.

Q.
$$6x^2 + 7x - 20 = 0$$
.

Watch Video Solution

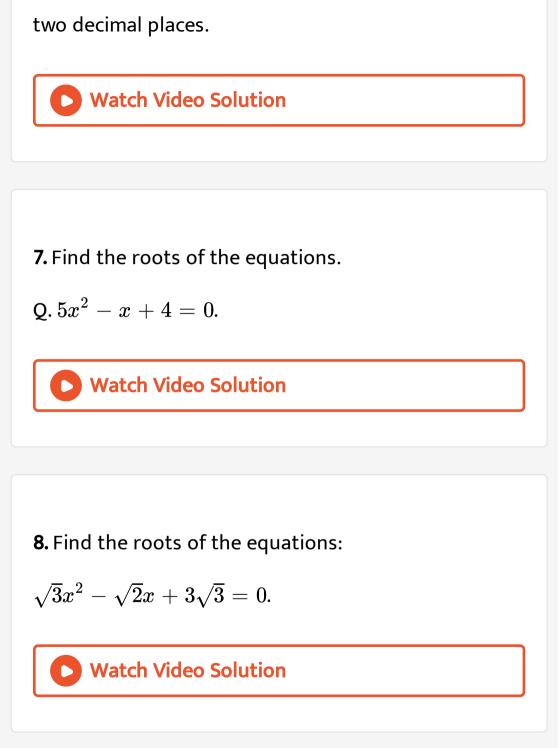
3. Find the roots of the equations.

Q.
$$36x^2 + 23 = 60x$$
.

4. Find the roots of the equations.

Q.
$$x^2 - 2x + 5 = 0$$

Watch Video Solution


5. Find the roots of the equations.

Q.
$$3x^2 - 17x + 25 = 0$$
.

6. Find the roots of the equations.

Q. $x^2 + 3x - 3 = 0$, giving your answer correct to

9. Find the roots of the equations.

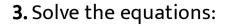
Q.
$$\frac{x^2+8}{11}=5x-x^2-5$$

Watch Video Solution

10. Find the roots of the equations.

$$\texttt{Q}.\,\frac{2x}{x-4}+\frac{2x-5}{x-3}=8\frac{1}{2}.$$

Watch Video Solution


11. The number of real solutions of the equation $\left|x^{2}
ight|-3|x|+2=0$ is (a) 3 (b) 4 (c) 1 (d) 3.

Exercise 10 B

1. Solve the equations:

$$x^4 - 5x^2 + 6 = 0.$$

$${\tt Q}.\,x^5+242=\frac{243}{x^5}.$$

$$10x^{-2} - 9 - x^{-4} = 0.$$

Q.
$$3^{2x} - 10 \times 3^x + 9 = 0.$$

Watch Video Solution

5. Solve the equations:

Q.
$$2^{2x-1} - 9 imes 2^{x-2} + 1 = 0.$$

6. Solve the equations:

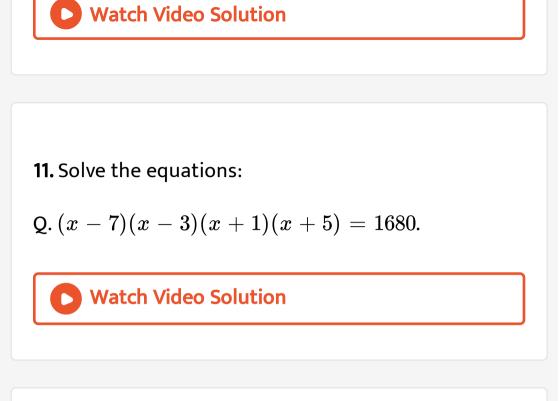
 $3^{2x+1} + 3^2 = 3^{x+3} + 3^x.$

7. Solve the equations:

Q.
$$\sqrt{x^2 - 3x} = 4x^2 - 12x - 3.$$

8. Solve the equations:

Q.
$$\sqrt{rac{x^2+2}{x^2-2}}+6\sqrt{rac{x^2-2}{x^2+2}}=5.$$

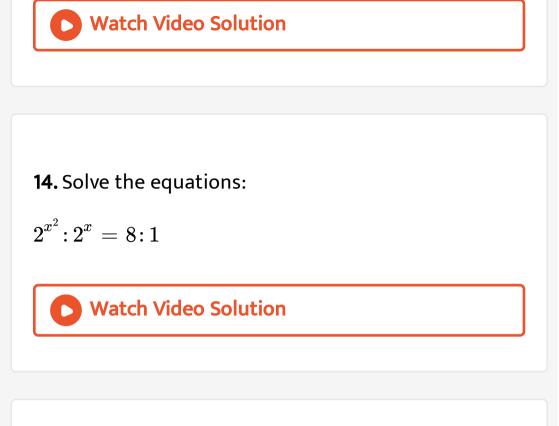

Watch Video Solution

Q.
$$\sqrt{rac{2x^2+1}{x^2-1}}+6\sqrt{rac{x^2-1}{2x^2+1}}=5.$$

Watch Video Solution

10. Solve the equations:

$${\tt Q}.\, x(x-1)(x+2)(x-3)+8=0.$$



12. Solve the equation:

$$(2x-7)ig(x^2-9ig)(2x+5)=91.$$

Watch Video Solution

13. solve the equation: $2^{2x} - 2^{x+2} - 4 \times 2^3 = 0$.

15. Solve the equation:

$$2^{2x+3} + 2^{x+3} = 1 + 2^x.$$

16. Solve the equations:

$$4^x - 3^{x - rac{1}{2}} = 3^{x + rac{1}{2}} - 2^{2x - 1}$$

1. Without solving, find the nature of the roots of the

following equations:

(i)
$$3x^2 - 7x + 5 = 0$$
.
(ii) $4x^2 + 4x + 1 = 0$.
(iii) $3x^2 + 7x + 2 = 0$.
(iv) $x^2 + px - q^2 = 0$.

2. If the equation $ig(1+m^2ig)x^2+2mcx+c^2-a^2=$

0 has equal roots, show that $c^2=a^2ig(1+m^2ig).$

Watch Video Solution

3. Find the value of m so that the roots of the equation $(4-m)x^2 + (2m+4)x + (8m+1) = 0$ may be equal.

4. If the roots of $ax^2 + x + b = 0$ be real and unequal, show that the roots of $\frac{x^2 + 1}{x} = 4\sqrt{ab}$ are imaginary.

5. Find 'a' so that the sum of the roots of the equation $ax^2 + 2x - 3a = 0$ may be equal to their product.

6. If
$$lpha,eta$$
 are the roots of the equation $x^2+x+1=0$, find the value of $lpha^3-eta^3.$

7. If
$$\alpha$$
, β are the roots of the equation
 $x^2 + px + q = 0$, find the value of
(a) $\alpha^3\beta + \alpha\beta^3$
(b) $\alpha^4 + \alpha^2\beta^2 + \beta^4$.

8. If the roots of the equation $x^2 + px + 7 = 0$ are denoted by α and β , and $\alpha^2 + \beta^2 = 22$, find the possible values of p.

9. If
$$\alpha$$
, β are the roots of the equation
 $3x^2 - 6x + 4 = 0$, find the value of
 $\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right) + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$.
Watch Video Solution

10. If lpha,eta are the roots of $ax^2+bx+c=0$, find the

value of

(i)
$$\left(\frac{\alpha}{\beta} - \frac{\beta}{\alpha}\right)^2$$

(ii) $\frac{\alpha^3}{\beta} + \frac{\beta^3}{\alpha}$.

11. If the sum of the roots of the equation $x^2-px+q=0$ be m times their difference, prove that $p^2ig(m^2-1ig)=4m^2q.$

Watch Video Solution

12. If one root of the equation $x^2 + ax + 8 = 0$ is 4 while the equation $x^2 + ax + b = 0$ has equal roots, find b.

13. Find the value of a for which one root of the quadratic equation $(a^2 - 5a + 3)x^2 + (3a - 1)x+2=0$ is twice as large as the other.

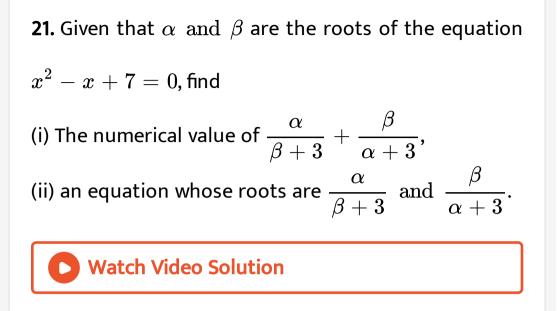
14. If α , β are the roots of the equation $ax^2 - bx + b = 0$, prove that $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} - \sqrt{\frac{b}{a}} = 0.$ **Vatch Video Solution** 15. If lpha and eta are the roots of the equation $x^2+x-7=0$, form the equation whose roots are $lpha^2$ and $eta^2.$

Watch Video Solution

16. If α and β are the roots of the equation $2x^2 + 3x + 2 = 0$, find the equation whose roots are $\alpha + 1$ and $\beta + 1$.

17. Find the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$, where α and β are the roots of the equation $x^2 + 2x + 3 = 0.$

Watch Video Solution


18. If α and β are the roots of the equation $2x^2 - 3x + 1 = 0$, form the equation whose roots are $\frac{\alpha}{2\beta + 3}$ and $\frac{\beta}{2\alpha + 3}$.

19. If $a \neq b$ and $a^2 = 5a - 3$, $b^2 = 5b - 3$, then form that equation whose roots are $\frac{a}{b}$ and $\frac{b}{a}$.

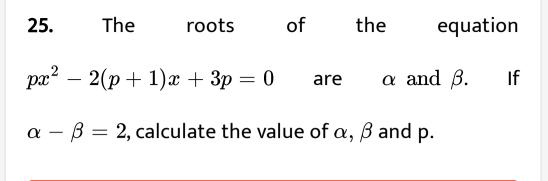
Watch Video Solution

20. Given that α and β are the roots of the equation

$$x^2 = x + 7.$$

(i) Prove that (a) $\frac{1}{\alpha} = \frac{\alpha - 1}{7}$ and (b) $\alpha^3 = 8\alpha + 7.$
(ii) Find the numerical value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}.$

22. Given that
$$\alpha$$
 and β are the roots of the equation
 $2x^2 - 3x + 4 = 0$, find an equation whose roots are
 $\alpha + \frac{1}{\alpha}$ and $\beta + \frac{1}{\beta}$.


23. The roots of the quadratic equation $x^2+px+8=0$ are lpha and eta. Obtain the values of p, if

- (i) $\alpha = \beta^2$
- (ii) lpha-eta=2.

Watch Video Solution

24. If the roots of $x^2 - bx + c = 0$ be two

consecutive integers, then find the value of $b^2 - 4c$.

Watch Video Solution

26. The roots of the equation $ax^2 + bx + c = 0$ are α and β . Form the quadratic equation whose roots are $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$.

27. Two candidates attempt to solve a quadratic equation of the form $x^2 + px + q = 0$. One starts with a wrong value of p and finds the roots to be 2 and 6. the other starts with a wrong vlaue of q and finds the roots to be 2 and -9. find the correct roots and the equation.

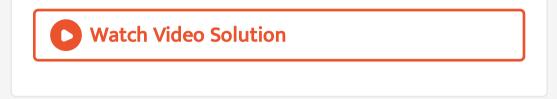
28. Given that α and β are the roots of the equation

$$x^2 = 7x + 4$$
,

(i) show that $lpha^3=53lpha+28$

Watch Video Solution

(ii) find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.


29. The ratio of the roots of the equation $x^2+lpha x+lpha+2=0$ is 2. find the values of the

parameter α .

Watch Video Solution

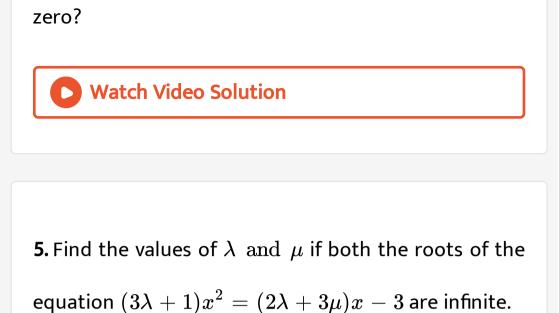
30. If (1-p) is a root of the quadratic equation $x^2 + px + (1-p) = 0$, then its roots are (a) 0,-1 (b) -1,1 (c) 0,1

(d) -1,2

Exercise 10 D

- **1.** Find the condition that one root of $ax^2 + bx + c = 0$ may be
- (i) three tiems the other,
- (ii) n times the other,
- (iii) more than the other by h.

2. Find the condition that the ratio between the roots


of the equation $ax^2 + bx + c = 0$ may be m:n.

3. If the ratio of the roots of the equation $x^2+px+q=0$ is equal to the ratio of the roots of $x^2+lx+m=0$, prove that $mp^2=ql^2.$

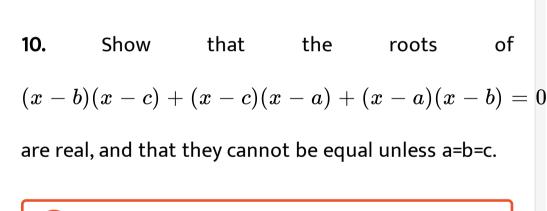
Watch Video Solution

4. For what values of a and b, the equation $x^2 + (2a - 3)x = 3b + 4$ should have both the roots

Watch Video Solution

6. Find m so that the roots of the equation $\frac{x^2 - bx}{ax - c} = \frac{m - 1}{m + 1}$ may be equal in magnitude and opposite in sign.

7. The roots of the quadratic equation $4x^2 - (5a+1)x + 5a = 0$, are p and q. if q=1+p, calculate the possible values of a,p and q.


8. Find the values of m for which the quadratic equation $x^2 - m(2x - 8) - 15 = 0$ has

(i) equal roots,

(ii) both roots positive.

9. If a+b+c=0, prove that the roots of $ax^2+bx+c=0$ are rational. Hence, show that the roots of $(p+q)x^2-2px+(p-q)=0$ are rational.

11. Determine the values of m for which the equations

 $3x^2 + 4mx + 2 = 0$ and $2x^2 + 3x - 2 = 0$ may

have a common root.

12. Find the value of k, so that the equation $2x^2 + kx - 5 = 0$ and $x^2 - 4x + 4 = 0$ may have

one root common.

13. If $ax^2 + bx + c = 0$ and $bx^2 + cx + a = 0$ have a common root, prove that a + b + c = 0 or a = b = c.

Watch Video Solution

14. The equations $x^2 + x + a = 0$ and

 $x^2+ax+1=0$ have a common real root

- (a) for no value of a.
- (b) for exactly one value of a.
- (c) for exactly two values of a.

(d) for exactly three values of a.

1. Draw the graph of the following quadratic functions.

Q. $y = x^2 - 5x + 6$ $0 \le x \le 5$.

Watch Video Solution

2. Draw the graph of the following quadratic functions.

$${ ext{Q. }}y = { ext{ - }}x^2 + 2x + 3 \qquad { ext{ - }}3 \le x \le 5.$$

3. Draw the graph of the following quadratic functions.

$$y=x^2-4x+4 \qquad -1\leq x\leq 5.$$

4. Solve graphically and compare your answer with algebraic solution either by factorization or formula method:

(i)
$$y = x^2 - 5x + 6$$

(ii) $y = -x^2 + 2x + 3$
(iii) $y = x^2 - 4x + 4$
(iv) $u = x^2 - x - 6$

(v)
$$y = x^2 - 6x + 9$$

(vi) $y = -x^2 - x + 12$
(vii) $y = x^2 - 4x + 5 = 0$
(viii) $y = x^2 + 2x + 2 = 0$.

Exercise 10 F

- 1. Show that
- (a) $x^2-3x+6>0$ for all x,
- (b) $4x x^2 6 < 0$ for all x.

(c) $2x^2 - 4x + 7$ is always +ve.

(d) $-2x^2 + 3x - 4$ is always -ve.

(e) $-x^2 + 3x - 3$ is always -ve.

2. Explain why
$$3x^2 + kx - 1$$
 is never always positive

for any value of k.

Watch Video Solution

3. Under what conditions is $2x^2 + kx + 2$ always

positive?

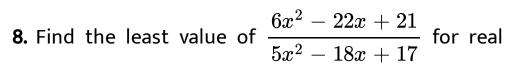
4. Find what values of a so that the expression $x^2 - (a+2)x + 4$ is always positive.

Watch Video Solution

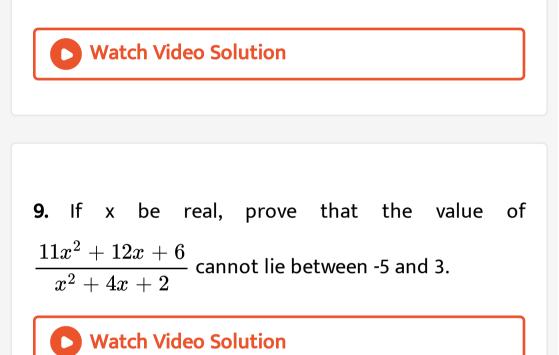
5. Find the range of values of x for which the expression $12x^2 + 7x - 10$ is negative.

Watch Video Solution

6. (i) Find the values of 'a' for which the expression $x^2 - (3a - 1)x + 2a^2 + 2a - 11$ is always positive (ii) If $x^2 + 4ax + 2 > 0$ for all values of x, then a lies


in the interval.

(a) (-2, 4)(b) (1,2) (c) $(-\sqrt{2}, \sqrt{2})$ (d) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (e) (-4,2).


Watch Video Solution

7. Find the greatest value of $3+5x-2x^2$ for all real values of x.

values of x.

Chapter Test

1. Solve the equation:

$$5^{x+1} + 5^{2-x} = 5^3 + 1$$

Watch Video Solution

2. Solve the equations:

$$\sqrt{rac{x}{1-x}}+\sqrt{rac{1-x}{x}}=rac{13}{6}.$$

Watch Video Solution

$$(x+1)(x+2)(x+3)(x+4) = 120$$

Walch Video Solution

4. Prove that both the roots of the equation $x^2 - x - 3 = 0$ are irrational.

Watch Video Solution

5. For what values of m will the equation $x^2-2mx+7m-12=0$ have (i) equal roots, (ii)

reciprocal roots ?

6. If one root of $2x^2 - 5x + k = 0$ be double the other, find the value of k. Watch Video Solution 7. If lpha,eta be the roots of the equation $x^2-x-1=0$, determine the value of i) $lpha^2+eta^2~{
m and}$ (ii) $\alpha^3 + \beta^3$.

Watch Video Solution

8. If the roots of the equation $ax^2 + bx + c = 0$ be in the ratio 3:4, show that $12b^2 = 49ac$.

9. If x is real, prove that the quadratic expression (i) (x-

- 2)(x+3)+7 is always positive.
- (ii) $4x 3x^2 2$ is always negative.

Watch Video Solution

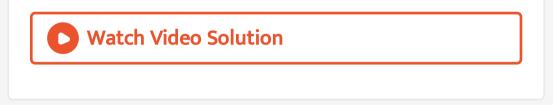
10. Draw the graph of the quadratic function $x^2 - 4x + 3$ and hence find the roots of the equation $x^2 - 4x + 3 = 0$. What is the minimum value of the function ?

11. For what real values of a, will the expression $x^2 - ax + 1 - 2a^2$, for the real x, be always positive ?

Watch Video Solution

12. If x be real, prove that the value of $\displaystyle rac{2x^2-2x+4}{x^2-4x+3}$

cannot lie between -7 and 1.


Watch Video Solution

13. If the roots of the equation $qx^2+2px+2q=0$ are real and unequal, prove that the roots of the

equation

$$(p+q)x^2+2qx+(p-q)=0$$
 are

imaginary.

14. If lpha,eta be the roots of $x^2-px+q=0$, find the value of $lpha^5eta^7+lpha^7eta^5$ in terms of p and q.

Watch Video Solution

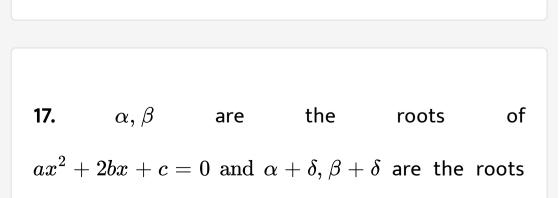
15. If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of a is (i) $(3, \infty)$ (ii) $(-\infty, -3)$ (iii) (-3, 3) (iv) $(-3, \infty)$

A. $(3, \infty)$ B. $(-\infty, -3)$ C. (-3, 3)

D. $(-3,\infty)$

Answer: C

Watch Video Solution

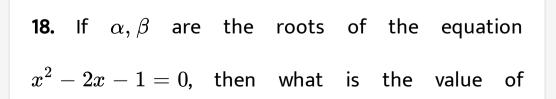

16. Let α, β be the roots of the equation $x^2 - px + r = 0$ and $\alpha/2, 2\beta$ be the roots of the equation $x^2 - qx + r = 0$, then the value of r is (1)

$$egin{aligned} &rac{2}{9}(p-q)(2q-p) & ext{(2)} & rac{2}{9}(q-p)(2p-q) & ext{(3)} \ &rac{2}{9}(q-2p)(2q-p) & ext{(4)} rac{2}{9}(2p-q)(2q-p) \end{aligned}$$

A.
$$\frac{2}{9}(p-q)(2q-p)$$

B. $\frac{2}{9}(q-p)(2p-q)$
C. $\frac{2}{9}(q-2p)(2q-p)$
D. $\frac{2}{9}(2p-q)(2q-p)$

Watch Video Solution


Answer: D

of
$$Ax^{2} + 2Bx + C = 0$$
, then what is
 $(b^{2} - ac) / (B^{2} - AC)$ equal to ?
A. $(b/B)^{2}$
B. $(a/A)^{2}$
C. $(a^{2}b^{2}) / (A^{2}B^{2})$
D. ab/AB

Answer: A::B

$$lpha^2eta^{\,-\,2}+lpha^{\,-\,2}eta^2$$
 ?

A. -2

B. 0

C. 30

D. 34

Answer: D

Watch Video Solution

19. If the roots of the quadratic equation $x^2+px+q=0$ are tan 30° and $an 15^\circ$, then value of 2+q-p is

A. 1

B. 2

C. 3

D. 0

Answer: C

Watch Video Solution

20. If both the roots of the quadratic equation $x^2 - 2kx + k^2 + k - 5 = 0$ are less than 5, then k lies in the interval.

A. (5,6]

B. (6, ∞)

 $\mathsf{C.}\,(\,-\infty,4)$

D.[4, 5]

Answer: C

Watch Video Solution

21. If
$$\alpha$$
 and β are the roots of $ax^2 + bx + c = 0$ and if $px^2 + qx + r = 0$ has roots $\frac{1-\alpha}{\alpha}$ and $\frac{1-\beta}{\beta}$ then r=
A. $a + 2b$

 $\mathsf{B.}\,a+b+c$

C. ab + bc + ca

D. abc

Answer: A::B

Watch Video Solution

22. The quadratic equations $x^2 - 6x + a = 0$ and $x^2 - cx + 6 = 0$ have one root in common. The other roots of the first and second equations are integers in the ratio 4:3. then the common root is

B. 4

C. 3

D. 2

Answer: D

Watch Video Solution

23. If
$$\alpha, \beta$$
 are the roots of the equation $\lambda(x^2 - x) + x + 5 = 0$ and if λ_1 and λ_2 are two values of λ obtained from $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 4$, then $\frac{\lambda_1}{\lambda_2^2} + \frac{\lambda_2}{\lambda_1^2}$ equals.

A. 4192

B. 4144

C. 4096

D. 4048

Answer: D

24. If
$$\alpha, \beta$$
 be the roots of $x^2 - a(x-1) + b = 0$,
then the value of $\frac{1}{\alpha^2 - a\alpha} + \frac{1}{\beta^2 - a\beta} + \frac{2}{a+b}$ is
A. $\frac{4}{a+b}$
B. $\frac{1}{a+b}$

C. 0

 $\mathsf{D.}-1$

Answer: C

Watch Video Solution

Example Solution

1. The roots of the quadratic equation $x^2+2\sqrt{2}x-6=0$ are

A. 2, $-3\sqrt{2}$

$$\mathsf{B.}\,\sqrt{2},\ -3\sqrt{2}$$

$$\mathsf{C.}-\sqrt{2},\,3\sqrt{2}$$

D.
$$2\sqrt{2}, -3$$

Answer: B

Watch Video Solution

2. If the equation $(m+6)x^2 + (m+6)x + 2 = 0$

has real and distinct roots, then

A.
$$m < -6$$

 $\mathsf{B}.\,m>2$

$$\mathsf{C}.-6 < m < 2$$

 ${\sf D}.\,m<\,-\,6\,\,{
m or}\,\,m>2$

Answer: D

Watch Video Solution

3. If the roots of the equation $x^2 + 5x - p = 0$ differ

by unity, then the value of p is

A.-6

B.-5

C. 6

D. 12

4. If α and β are roots of the equation $px^2 + qx + 1 = 0$, then the value of $\alpha^3 \beta^2 + \alpha^2 \beta^3$ is

A.
$$\frac{q}{p^3}$$

B. $-\frac{q}{p^3}$
C. $\frac{p}{q^3}$
D. $-\frac{p}{q^3}$

5. If α , β are roots of the equation $3x^2 + 4x - 5 = 0$, then $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ are roots of the equation A. $15x^2 + 46x + 1 = 0$ B. $15x^2 - 46x + 1 = 0$ C. $x^2 + 46x + 15 = 0$ D. $x^2 - 46x + 15 = 0$

Answer: A

Watch Video Solution

6. For all real values of x, the maximum value of the expression $3-5x-2x^2$ is

A.
$$-\frac{5}{4}$$

B. $\frac{7}{8}$
C. $-\frac{49}{8}$
D. $\frac{49}{8}$

Answer: D

7. If the expression $x^2 - (m+2)x + 4$ is always positive for all real values of x, then find range of m

A. m < 2

 $\mathsf{B}.\,m>\,-6$

$${\sf C}.-6 < m < 2$$

D.
$$m<~-6~{
m or}~m>$$

Answer: C

Multiple Choice Questions

1. The roots of the equation $x^2 - 4x + 13 = 0$ are

A. $2\pm 3i$

- ${\sf B}.-2\pm 3i$
- C.5, -1
- D. 3i, -3i

Answer: A

2. The roots of the equation $2x^2 - 5x + 2 = 0$ are

A.
$$-2, \frac{1}{2}$$

B. 2,
$$-\frac{1}{2}$$

C. 2, $\frac{1}{2}$
D. -2 , $-\frac{1}{2}$

Answer: C

3. If the equation $mx^2 + mx + 1 = -4x^2 - x$ has

equal roots, then the values of m are

A. -5, 3

B. 5, -3

C. 5, 3

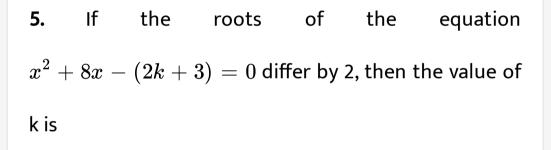
D. -5, -3

Answer: B

Watch Video Solution

4. If the equation $(m+6)x^2 + (m+6)x + 2 = 0$ has a pair of complex conjugate roots, then find interval of m

A. m > -6


 ${\rm B.}\,m<2$

 $\mathsf{C}.-6 < m < 2$

D. $m < -6 \,\, {
m or} \,\, m > 2$

Answer: C

A. 9

B.-9

C. 6

D.-6

Answer: B

6. If α and β are roots of the equation $x^2-2x+1=0,$ then the value of $\dfrac{lpha}{eta}+\dfrac{eta}{lpha}$ is

A. 4

B. 1

C. 2

D. 0

7. If one root of the equation $3x^2-5x+\lambda=0$ is the

reciprocal of the other, then the value of λ is

A.
$$\frac{1}{3}$$

 $\mathsf{B.}-3$

D. 1

8. If
$$lpha$$
 and eta are roots of the equation $2x^2-3x-5=0$, then the value of $\displaystyle rac{1}{lpha}+\displaystyle rac{1}{eta}$ is

$$A. - \frac{3}{5}$$
$$B. \frac{3}{5}$$
$$C. \frac{5}{3}$$
$$D. - \frac{5}{3}$$

Answer: A

9. If lpha and eta are roots of the equation $x^2+x+1=0$, then $lpha^2+eta^2$ is equal to

A. 2

B. 1

C. -1

 $\mathsf{D.}-2$

10. If lpha,eta are roots of the equation $x^2-a(imes+1)-c=0,$ then write the value of (1+lpha)(1+eta).

A. p-q

- B. 1 p
- C.1 + q
- D.1 q

Answer: D

Watch Video Solution

11. If lpha, eta are roots of the equation $x^2+lx+m=0$, write an equation whose roots are $-rac{1}{lpha}$ and $-rac{1}{eta}$

A.
$$cx^2+bx+a=0$$

B.
$$cx^2 - bx + a = 0$$

$$\mathsf{C.}\, cx^2 - bx + c = 0$$

D.
$$ax^2-cx+b=0$$

12. If -4 is a root of the equation $x^2 + px - 4 = 0$ and the equation $x^2 + px + q = 0$ has equal roots, then the value of q is

A.
$$-\frac{9}{4}$$

B. $\frac{9}{4}$
C. $\frac{4}{9}$

D. 36

13. If the roots α, β of the equation $x^2 - px + 16 = 0$ satisfy the relation $\alpha^2 + \beta^2 = 4$, then the value(s) of p is/are

A. 6 only

B.-6 only

C. 6 or -6

D.8 or -6

14. Find the number of real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0.$ A. 1 B. 2 C. 3 D. none Answer: D Watch Video Solution

15. The equation of the smallest degree in the real coefficients having 1 - i as one of its roots is

A.
$$x^2 + 2x - 2 = 0$$

B.
$$x^2-2x+2=0$$

$$\mathsf{C.}\,x^2+2x+2=0$$

D.
$$x^2-2x-2=0$$

16. The least value of k which makes the roots of the equation $x^2 + 5x + k = 0$ imaginary is

A. 5

B. 6

C. 7

D. 8

17. For the real values of x, the maximum value of $7+10x-5x^2$ is

A. 12

 ${\sf B.} - 12$

C. 48

D. 60

Answer: A

18. For all real values of x, the minimum value of the quadratic expression $x^2 - 3x + 3$ is

A.
$$\frac{3}{2}$$

B. $\frac{3}{4}$
C. $-\frac{3}{4}$
D. $-\frac{3}{2}$

19. If the expression $x^2 - (m+2)x + 4$ is always positive for all real values of x, then find range of m

A. $m > \, -3$

 $\mathrm{B.}\,m<1$

 ${\sf C}.\,m<\,-3\,\,{
m or}\,\,m>1$

D.
$$-3 < m < 1$$

Answer: D

