

MATHS

BOOKS - S CHAND MATHS (ENGLISH)

RELATIONS AND FUNCTIONS

Example

1. If $A = \{a, b\}$, then all possible ordered paris are (a,a) (b,b) (a,b) (b,a).

Watch Video Solution

2. If $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Then all possible ordered pairs such that in each ordered pair the first component is an element of set A and second component is an element of set B are obtained by pairing each element from set A with each element form set B. This can be done

by the following scheme:

3. Express $ig\{(x,y)\!:\!x^2+y^2=25, ext{where}x,y\in Wig\}$ as a set of ordered

pairs.

4. The number of elements in the set $\{(a, b): 2a^2 + 3b^2 = 35, a, b, \in Z\}$, where Z is set of all integers is A. 2 B. 4 C. 8 D. 12

Answer: A::B::C::D

5. If
$$A = \{a, b\}$$
 and $B = \{1\}$, then $A \times B = \{(a, 1), (b, 1)\}$ and $B \times A = \{(1, a), (1, b)\}$

Watch Video Solution

 $A^2 = A imes A = \{(2,2)(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)\}$

Watch Video Solution

7. If $A imes B = \{(a,x), (a,y), (b,x), (b,y)\}.$ Find A and B.

8. Let $A = \{x \in N : x \leq 4\}$ and $B = \{y \in N : 3 < y \leq 5\}$. Find out A imes A

9. Let $A = \{x \in N \colon x \leq 4\}$ and $B = \{y \in N \colon 3 < y \leq 5\}.$ Find out A imes B

10. Let
$$A = \{x \in N \colon x \leq 4\}$$
 and $B = \{y \in N \colon 3 < y \leq 5\}.$ Find out $B imes A$

Watch Video Solution

11. Let $A = \{x \in N : x \leq 4\}$ and $B = \{y \in N : 3 < y \leq 5\}$. Find out (B imes B)

12. Let $A = \{x \in N \colon x \leq 4\}$ and $B = \{y \in N \colon 3 < y \leq 5\}.$ Find out n(A imes A)

13. Let
$$A = \{x \in N \colon x \leq 4\}$$
 and $B = \{y \in N \colon 3 < y \leq 5\}.$ Find out $n(A imes B)$

Watch Video Solution

14. Let $A = \{x \in N \colon x \leq 4\}$ and $B = \{y \in N \colon 3 < y \leq 5\}.$ Find out n(B imes A)

15. Let
$$A = \{x \in N \colon x \leq 4\}$$
 and $B = \{y \in N \colon 3 < y \leq 5\}.$ Find out $n(A imes B)$

16.
 If

$$A = \{1, 2, 3\}, B = \{4, 5\}, C = \{1, 2, 3, 4, 5\}$$
 find

 $(i)A \times B(ii)C \times B(iii)B \times B$
 Hence
 prove
 that

 $(C \times B) - (A \times B) = B \times B.$
 Watch Video Solution
 V

17. If each one of the two sets A and B has 3 elements, how many elements are there in $A \times B$? If three of the elements in $A \times B$ be (2,3), (4,4) and (6,6), find the remaining elements.

18. Is $A imes \phi$ the empty set or not, where ϕ denotes the empty set and A is

any set?

19. Let $A = \{1,2\}, \ B = \{1,2,3,4\}, \ C = \{5,6\} and \ D = \{5,6,7,8\}$.

Verity that: $A imes (B \cap C) = (A imes B) \cap (A imes C)$

Watch Video Solution

20. Let $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$

verify that

A imes C is a subset of B imes D.

22. If $A \subseteq B$, and $C \subseteq D$, prove that $A \times C \subseteq B \times D$.

Watch Video Solution

23. Taking $A = \{1, 2, 3, 4\}, B = \{4, 5\}$ in Ex.8, represent $A \times B$ and

B imes B pictorially, using arrows.

Watch Video Solution

24. Taking $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6\}$, draw the graphs of (i) $A \times A$ (ii) $B \times A$.

26. Let R be the set of real numbers. What does $(R \times R \times R)$ represent?

Watch Video Solution

27. Let R be the relation from $A = \{1, 2, 3, 4, 5, 6\}$ to $B = \{1, 3, 5\}$ which is defined by the open sentence "x is less than y".

(i) Find the solution set of R, that is write R as set of ordered pairs.

(ii) Plot R on a co-ordinate diagram of $A \times B$.

(iii) state the domaing, range and codomain of R.

28. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. Which of the following are relations from A to B? $\{(a, y), (a, z), (c, x), (d, y)\}$

Watch Video Solution

29. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. Which of the following are relations from A to B? $\{(a, x), (b, y), (c, x), (a, d)\}$

Watch Video Solution

30. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. Which of the following are relations from A to B? $\{(a, x), (y, d), (x, c)\}$

Watch Video Solution

31. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. Which of the following are relations from A to B? $\{(y, a), (z, a), (z, c), (y, d)\}$

32. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. Which of the following are

relations from A to B? $\{(a,x),(x,a),(b,y),(y,b)\}$

Watch Video Solution

33. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. Which of the following are relations from A to B? $\{(a, x), (b, y), (c, z), z\}$

Watch Video Solution

34. If $A = \{x, y, z\}$ and $B = \{1, 2\}$, then the number of relations from A

to B is

35. Determine the domain and range of the following relations : $\{(-3, 1), (-1, 1), (1, 0), (3, 0)\}$

36. Determine the domain and range of the following relations : $\{(x, y) : x \text{ is a multiple of } 3 \text{ and } y \text{ is a multiple of } 5\}$

Watch Video Solution

37. Determine the domain and range of the following relations : $\{(x, x^2): x \text{ is a prime numbers less than } 15\}$

38. Let N be the set of nutural numbers. Deseribe the following relation in

words giving its domain and the range.

 $\{(1, 1), (16, 2), (81, 3), (256, 4)\}$

39. I is the set of integers. Describe the following relations in words, giving its domain and range.

 $\{(0,0),\,(1,\ -1),\,(2,\ -2),\,(3,\ -3).....\}$

Watch Video Solution

40. Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by $\{(a, b) = a \in A, b \in A, a ext{ divides } b\}$. Find

(i) R (ii) domain of R (iii) range of R

Watch Video Solution

41. If $A = \{1, 2, 3, 4\}, B = \{5, 6, 7, 8\}$, then which of the following are relations from A to B? Give reasons for your answer.

 $R_1 = \{(1,5), (2,7), (3,8)\}$

42. If $A = \{1, 2, 3, 4\}, B = \{5, 6, 7, 8\}$, then which of the following are relations from A to B? Give reasons for your answer. $R_2 = \{(6, 2), (3, 7), (4, 7)\}$

Watch Video Solution

43. Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A

to B.

44. Which of the following relation are functions? Give reasons. In cane of a function, determine its domain and range.

$$\{(1,\ -2),\,(3,7),\,(4,\ -6),\,(8,11)\}$$

45. Which of the following relation are functions? Give reasons. In cane of

a function, determine its domain and range.

 $\{(1,0),\,(1,\,-1),\,(2,3),\,(4,10)\}$

Watch Video Solution

46. Which of the following relation are functions? Give reasons. If it is a function, determine its domain and range.

 $\{(a,b),(b,c),(c,d),(d,e)\}$

> Watch Video Solution

47. State whether or not each of the following diagrams defines a function

50. Which of the following relations are functions ? y < x + 3.

51. Which of the following relations are functions ?

y is the Maths teacher of x where x represents any pupII taking up Maths in a school.

Watch Video Solution

52. Which of the following relations are functions ?

y is a Maths pupil of x, where x represents any Maths teacher in a school.

Watch Video Solution

53. State the domain of these functions :

 $f{:}x
ightarrow 5x$

54. State the domain of these functions :

 $g{:}x
ightarrow 5x,x\in Z$

55. State the domain of these functions :

$$h(x)\colon rac{2}{x-7}$$

Watch Video Solution

56. State the domain of these functions :

 $F\!:\!x
ightarrow 5x,x\in\{0,1,2\}$

Watch Video Solution

57. State the domain of these functions :

$$f{:}x
ightarrow rac{x}{5}$$

58. State the domain of these functions :

$$F\!:\!x
ightarrowrac{6}{x}$$

Watch Video Solution

59. State the domain of these functions :

$$H\!:\!x
ightarrow x^2+5x-6$$

Watch Video Solution

60. State the domain of these functions :

$$g\!:\!x
ightarrow rac{x-4}{(x-3)(x+6)}$$

61. State the domain of these functions :

$$g\!:\!x
ightarrow rac{x}{1},x\in\{2,4,6\}$$

Watch Video Solution

62. State the domain of these functions :

$$g\!:\!x
ightarrow rac{1}{x},x\in R$$

Watch Video Solution

63. Does the relation $\{(x,y)|y=|x\mid ,x\in R\}$ define a function? Write

the range and draw the graph.

Watch Video Solution

64. Does the relation 'a square root of' in the set of real numbers

represent a function ?

65. Find whether the following functions are one-one or not.

 $f{:}R
ightarrow R$, defined by $f(x)=x^3, x\in R$

Watch Video Solution

66. Find whether the following functions are one-one or not.

$$f\colon Z o Z$$
, defined by $f(x)=x^2+5$ for all $x\in Z$

Watch Video Solution

67. Find whether the following functions are one-one or not.

$$f{:}R-\{3\}
ightarrow R$$
, defined by $f(x)=rac{5x+7}{x-3}, x\in R-\{3\}$

68. Show that the modulus function $f \colon R o R$, given by f(x) = |x|, is

not one-one function.

69. Prove that the greatest integer function $f\colon R o R$, given by f(x)=[x] is a many-one function.

Watch Video Solution

70. Find whether the following is onto function (surjection) or not.

$$f{:}\,R o R$$
 defined by $f(x)=x^3+5$ for all $x\in R$

71. Find whether the following are into functions (surjections) or not.

$$f\!:\!R o R$$
 defined by $f(x)=x^2+3$ for all $x\in R$

72. Find whether the following are into functions (surjections) or not.

 $f\colon Z o Z$ defined by f(x)=5x-9 for all $x\in Z.$

Watch Video Solution

73. If $A = R - \{3\}$ and $B = R - \{1\}$ and $f: A \to B$ is a mapping defined by $f(x) = \frac{x-2}{x-3}$ show that f is one-one onto function.

Watch Video Solution

74. Let f=N
ightarrow N be defined by $f(x)=x^2+x+1, x\in N$, then

prove that f is one-one but not onto.

75. Let $f\colon R o R$ be a function defined by $f(x)=rac{x-m}{x-n}$, where m
eq n

. Then show that f is one-one but not onto.

76. The function $f\!:\!R o R$ defined by $f(x)=e^x$ is

A. (i) Onto

B. (ii) Many-one

C. (iii) One-one and into

D. (iv) Many one and onto.

Answer:

77. If $f\!:\!R o R$ be defined as $f(x)=x^4.$ Choose the corrent answer : (a)

f is one-one onto (b)f is many-one onto (c)f is one-one but not onto (d)f is

neither one-one nor onto

A. f is one-one onto

B. f is many-one onto

C. f is one-one but not onto

D. f is neither one-one nor onto

Answer: D

Watch Video Solution

78. Let
$$f: N \to N$$
 be defined by $f(n) = \begin{cases} \frac{n+1}{2} & \text{if n is odd} \\ \frac{n}{2} & \text{if n is even} \end{cases}$ for all

 $n\in N.$

Prove that f is many-one, onto function.

79. If
$$f(x) = rac{x-|x|}{|x|}$$
, then find f(-1).

80. If
$$f(x)=rac{x}{x-1}$$
 , then prove that $rac{f(a)}{f(a+1)}=fig(a^2ig)$

81. If
$$f(x)=rac{1}{\sqrt{x+2\sqrt{2x-4}}}+rac{1}{\sqrt{x-2\sqrt{2x-4}}}$$
 for $x>2$ then find f(11).

82. If
$$f(x) = rac{1+x}{1-x}$$
, show that $f \mid f(an heta)] = -\cot heta.$

Watch Video Solution

83. If
$$f(x)=\cos(\log x)$$
 , then $fig(x^2ig)fig(y^2ig)-rac{1}{2}ig[fig(x^2y^2ig)+fig(rac{x^2}{y^2}ig)ig]=0$

$$A.-2$$

$$B. -1$$

C.
$$\frac{1}{2}$$

Answer: D

Watch Video Solution

84. If
$$f(x) = \begin{cases} 2x - 1 & \text{when } x \leq 0 \\ x^2 & \text{when } x > 0 \end{cases}$$
, then find $f\left(\frac{1}{2}\right)$ and $f\left(\frac{-1}{2}\right)$

Watch Video Solution

very small.

86. Graph the following piece wise-defined function :

$$\left\{egin{array}{ll} -x, & x < 0 \ x^2, & 0 \leq x \leq 1 \ 1, & x > 1 \end{array}
ight.$$

Watch Video Solution

87. Examine whether
$$x\left(rac{a^x+1}{a^x-1}
ight)$$
 is an odd or even function.

Watch Video Solution

88. The function
$$f(x) = \sin\Bigl(\log\Bigl(x+\sqrt{x^2+1}\Bigr)\Bigr)$$

Watch Video Solution

89. Determine whether the function is even, odd or niether even or odd.

(a)
$$f(x)=5-x^2$$
 (b) $f(x)=ert-xert$ (c) $f(x)=ert x ert$ (d) $f(x)=ert x-2ert$

92. The function $f(x) = \sin x + \cos x$ will be

A. an even function

B. an odd function

C. a constant function

D. None of these

Answer: d

93. If f is a real function, find the domain of

$$f(x)=\sqrt{\left(a^2-x^2
ight)}$$

Watch Video Solution

94. If f is a real function, find the domain of

$$f(x)=rac{1}{3x+2}$$

Watch Video Solution

95. If f is a real function, find the domain of

$$f(x) = rac{1}{\log \lvert x
vert}$$

96. If f is a real function, find the domain of

$$f(x) = 10^{-x}$$

Watch Video Solution

97. Find the domain of

$$\sqrt{x} + \sqrt{2x - 1}$$

Watch Video Solution

98. Find the domain of

$$\log(x-2) - \sqrt{(3-x)}$$

99. Find the domain of the following functions.

$$f(x)=\log_{3+x}\bigl(x^2-1\bigr)$$

Watch Video Solution

100. Find the domain of the following functions.

$$f(x) = rac{\sin^{-1}(3-x)}{\ln(|x|-2)}$$

Watch Video Solution

101. Find the domain of the following functions.

$$f(x)=\sin^{-1}\log_2rac{x}{3}$$

Watch Video Solution

102. Find the domain of the following functions.

$$f(x) = rac{\log_2(x+3)}{(x^2+3x+2)}$$

103. Find the domain of the following functions.

$$f(x) = rac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$$

Watch Video Solution

104. Find the domain of the following functions.

$$f(x) = \log_e = rac{2+x}{2-x}$$

105. The domain of the definition of the function
$$f(x) = \sqrt{1 + \log_e(1-x)}$$
 is
A. $-\infty < x \le 0$
B. $-\infty < x \le rac{e-1}{e}$

 $\mathsf{C}.-\infty < x \leq 1$

D. $x \geq 1-e$

Answer: B

Watch Video Solution

106. Find the domain of the function $:f(x)=rac{3}{4-x^2}+(\log)_{10}ig(x^3-xig)$

A. (1,2)

B. $(-1,0) \cup (1,2)$ C. $(-1,2) \cup (2,\infty)$ D. $(-1,0) \cup (1,2), \cup (2,\infty)$

Answer: D

107. Find the range of the following functions.

$$y = rac{x^2}{1+x^2}$$

Watch Video Solution

108. Find the range of the following functions.

$$f(x)=\sqrt{3x^2-4x+5}$$

Watch Video Solution

109. Find the range of the following functions.

$$f(x)=\log_eig(3x^2-4x+5ig)$$

Watch Video Solution

110. Find the range of the following functions.

$$f(x)=rac{5}{3-x^2}$$

111. Find the domain and range of the function

$$f(x)=rac{4-x}{x-4}$$

Watch Video Solution

112. Find the domain and range of the function $f(x) = [\sin x]$

Watch Video Solution

113. The absolute value function y = f(x) = |x| Draw its graph.

114. Draw the graph of the function $f(x) = \left| x - 1 \right|$
115. Draw the graph of the function f(x) = -x|x|.

116. Draw the graph of following functions.

$$f(x)=rac{|x|}{x}$$

Watch Video Solution

117. Draw the graph of following functions.

$$f(x) = \left|x\right| + \left|x - 1\right|$$

Watch Video Solution

118. Draw the graph of the function y = |x-2| + |x-3|

3. If
$$A=\{1,3,5,7)$$
 and $B=\{2,4,6\}$, find $A imes A$

5. If $A=\{1,3,5,7)$ and $B=\{2,4,6\}$, find B imes A

Watch Video Solution

6. If
$$A=\{1,3,5,7)$$
 and $B=\{2,4,6\}$, find $B imes B$

Watch Video Solution

7. If $A = \{1, 3, 5, 7)$ and $B = \{2, 4, 6\}$, find n(A imes A)

8. If
$$A=\{1,3,5,7)$$
 and $B=\{2,4,6\}$, find $n(A imes B)$

9. If
$$A=\{1,3,5,7)$$
 and $B=\{2,4,6\}$, find $n(B imes A)$

Watch Video Solution

10. If $A=\{1,3,5,7)$ and $B=\{2,4,6\}$, find n(B imes B)

11. If $P = \{m, n)$ and $Q = \{n, m\}$, then $P imes Q = \{(m, n), (n, m)\}$

Watch Video Solution

12. $\{(a, x), (a, y), (b, x), (b, y)\}$ is a product set.

16. Given $A=\{1,2\}, B=\{3\}, C=\{4,5\},$ test whether the following is

true:

 $A imes (B \cap C) = (A imes B) \cap (A imes C)$

Watch Video Solution

- 17. If $A = \{1, 2, 3, 4\}, B = \{5, 7, 9\}, C = \{2, 4, 6\}$, find
- (i) A imes B (ii) (B imes C) (iii) C imes A and draw their graphs.

Watch Video Solution

18. Some elements of A imes B are (a, x), (c, y), (d, z). If $A = \{a, b, c, d\}$,

find the remaining elements of $A \times B$ such that $n(A \times B)$ is least.

19. The ordered pairs (1,1),(2,2),(3,3) are among the elements in the set $A \times B$. If A and B have 3 elements each, how many elements in all does the set $A \times B$ have? Also find the remaining elements.

20. If $A = \{1,4\}, B = \{2,3,6\}$ and $C = \{2,3,7\}$, then verify that $A \times (B \cup C) = (A \times B) \cup (A \times C)$

Watch Video Solution

21. If $A = \{1, 4\}, B = \{2, 3, 6\}$ and $C = \{2, 3, 7\}$, then verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$

22. If $A = \{2, 3\}, B = \{1, 2, 3\}, C = \{2, 3, 4\}$ show that $A \times A = (B \times B) \cap (C \times C).$

23. Let A and B be two sets such that n(A) = 3andn(B) = 2. If (x, 1), (y, 2), (z, 1) are in A \times B. find A and B. where x, y and z are distinct elements.

Watch Video Solution

24. The Cartesian product $A \times A$ has 9 elements among which are found (1, 0) and (0, 1). Find the set A and the remaining elements of $A \times A$.

1. Write down the relation shown by the arrow diagram, by listing the ordered pairs. State the domain, co-domain, and the range of the relation.

2. Which of the following are relations from B to A, where $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$? $\{(z, x), (z, y), (x, a)\}$

4. Which of the following are relations from B to A, where $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$? $\{(x, b), (y, a)\}$

Watch Video Solution

5. Which of the following are relations from B to A, where $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$? $\{(b, y), (c, z), (a, x)\}$

Watch Video Solution

7. In each of the following, state which of the ordered pairs belong to the

given

relations?

 $\{(x,y): x>y+5\}, (1,0), (8,2), (0,1), (2,8), (9,3), (10,7), (123,4)$

Watch Video Solution

8. In each of the following, state which of the ordered pairs belong to the

given

relations?

 $\{(x, y): xy = 12\}, (3, 4), (4, 3), (12, 0), (0, 12), (12, 1), (6, 2), (7, 5)\}$

9. In each of the following, state which of the ordered pairs belong to the

givenrelations?
$$\left\{(x, y) : y = \frac{x+3}{x-3}, x \neq 1\right\} : (0, 1), (2, 5), (5, 2), (3, 3), (7, 5), \left(7, \frac{5}{3}\right)$$
 \bigcirc Watch Video Solution

10. Let N be the set of natural numbers. Describe the following relations

in words, giving their domain and the range. $\{(2, 1), (4, 2), (10, 5), (18, 9), (20, 10)\}$

11. Let N be the set of natural numbers. Describe the following relations in words, giving their domain and the range. $\{(3, 1), (6, 2), (15, 5)\}$

13. Z is the set of integers. Describe the following relation in set builder form, given its domain and range.

$$\{(0,\ -7),\,(2,\ -5),\,(4,\ -3),\,(\, -13,\ -20),\,.....\,\}$$

Watch Video Solution

14. Write down the domain and range of the relation (x,y): x=3y and x and

y are natural numbers less than 10.

15. Determine the domain and range of the relation R.

 $R = \{(x+1,x+5) \mid x \in \{0,1,2,3,4,5\}\}$. Draw the graph of R.

16. Determine the domain and range of the relation R.

 $R = ig\{ ig(x,x^3ig) \mid x \; \; ext{is a prime number less than 10} ig\}$

Watch Video Solution

17. Given $A = \{-2, -1, 0, 1, 2\}$, list the ordered pairs determined by

each of the following relations applied on A:

 R_1 = "is less than"

18. Given $A = \{-2, -1, 0, 1, 2\}$, list the ordered pairs determined by each of the following relations applied on A:

 R_2 = "is the square of"

Watch Video Solution

19. Given $A = \{-2, -1, 0, 1, 2\}$, list the ordered pairs determined by

each of the following relations applied on A:

 R_3 = "is the additive inverse of"

Watch Video Solution

20. Given $A = \{-2, -1, 0, 1, 2\}$, list the ordered pairs determined by

each of the following relations applied on A:

 R_4 = "is equal to"

21. Given $A = \{2, 3, 4, 5, 6\}$. List the elements of each of the following relations:

 $\{(x,y)\in A imes A\!:\!x=y\}$

Watch Video Solution

22. Given $A=\{2,3,4,5,6\}$. List the elements of each of the following

relations:

$$igg\{(x,y)\in A imes A\!:\!x>y, rac{x}{y}$$
 , (W)

Watch Video Solution

23. Given $A = \{2, 3, 4, 5, 6\}$. List the elements of each of the following relations:

 $\{(x,y)\in A imes A\,{:}\,x\;\; ext{ is a divisor of y and }\;x
eq y\}$

24. If A is the set of even natural numbers less than 8 and B in the set prime numbers less than 7, then the number of relations from A to B is

A. 2^9 B. 9^2 C. 3^2 D. $2^9 - 1$

Answer: A

Watch Video Solution

25. Let A be a finite set. The number of relations on A where A has 3 elements are : (i) 9 (ii) 6 (iii) 256 (iv) 512

A. 9

B. 0.81

C. 24.3

D. 512

Answer: D

26. Let n(A)=p. Then the number of all relations on A is

A. 2^p

B. $2^{p!}$

 $\mathsf{C}.\,2^{p^2}$

D. None of these

Answer: C

1. Let $X = \{1, 2, 3, 4\}$. Determine whether or not each relation is a function from X into X.

$$f = \{(2,3), (1,4), (2,1), (3,2), (4,4)\}$$

2. Let $X = \{1, 2, 3, 4\}$. Determine whether or not each relation is a function from X into X.

 $g=\{(3,1),(4,2),(1,1)\}$

Watch Video Solution

3. Let $X = \{1, 2, 3, 4\}$. Determine whether or not each relation is a function from X into X.

$$h = \{(2,1), (3,4), (1,4), (4,4)\}$$

4. State for each of the following relations whether it is function or not.

(Write Yes or No)

 $\{(1,2),(2,2),(3,2),(4,2)\}$

Watch Video Solution

5. State for each of the following relations whether it is function or not. (Write Yes or No)

 $\{(x,y)\colon x\in A, y\in B \hspace{0.2cm} ext{is surname of x}\}$ where A is the set of people in

India and B is the set of surnames.

6. State for each of the following relations whether it is function or not.

(Write Yes or No)

 $\{(x,y)\colon x\in A,\,y\in B,\,y\;\; ext{ is the area of a square of side x}\}$ where A is the

set of measurements of length.

7. State for each of the following relations whether it is function or not.(Write Yes or No)

 $\{(x, y): x \in B, y \in P, y \text{ is a passenger on x}\}$ where B is the set of buses of a school and P is set of pupils of some schools.

Watch Video Solution

8. State for each of the following relations whether it is function or not. (Write Yes or No) $\{(x, y) : x \in A, y \in B, y \text{ is sewn onto y}\}$, where A is the set of buttons

and B is the set of shirts.

Watch Video Solution

9. The ordered pairs are represented by the points shown. For each diagram, state whether it represents a relation or a function. Justify your

answer.

10. The domain and range of a function $f(x) = \frac{3}{x} + 1$ are subsets of A and B respectively, where $A = \left\{ -\frac{1}{2}, 0, \frac{2}{3}, \frac{6}{7}, 1 \right\}$ and $B = \left\{ -5, 0, 4\frac{1}{2}, 5, 5\frac{1}{2} \right\}$. List the elements of the function as ordered pairs.

Watch Video Solution

11. Which of the four statements given below is different from others?

(a)
$$f\!:\!A o B$$
 (b) $f\!:\!x o f(x)$

(c) f is a mapping of A into B (d) f is a function of A into B

12.
$$A=\{-2,\ -1,1,2\}$$
 and $f=\left\{\left(x,rac{1}{x}
ight),x\in A
ight\}$

List the range of f

Watch Video Solution

13.
$$A=\{-2,\ -1,1,2\}$$
 and $f=\left\{igl(x,rac{1}{x}igr),x\in A
ight\}$

List the range of f

Watch Video Solution

14.
$$A=\{-2,\ -1,1,2\}$$
 and $f=\left\{igl(x,rac{1}{x}igr),x\in A
ight\}$

Is f a function?

15. $f: x \rightarrow$ highest prime factor of x.

Find the range of f when the domain is $\{12, 13, 14, 15, 16, 17\}$.

16. $f: x \rightarrow$ highest prime factor of x.

State a domain of five integers for which the range is (3).

Watch Video Solution

17. $f: x \rightarrow$ highest prime factor of x.

A set of positive integers is called S. What can be said about these

integers if (f)(S)=S?

18. For
$$x > 3,$$
 $f(x) = 3x - 2$ and for $-2 \le x \le 2,$ $f(x) = x^2 - 2,$ find f(0)+f(4)

Watch Video Solution

19. If
$$f\colon R o R$$
 defined by $f(x)= egin{cases} 4x-1 & ext{for} & x>4\ x^2-2 & ext{for} & -2\leq x<4\ 3x+4 & ext{for} & x<-2 \end{cases}$

find f(5) + f(0) + f(-5)

Watch Video Solution

20. What is the fundamental difference between a function and a relation ? Let $X = \{1, 2, 3, 4\}$ and $Y = \{1, 5, 9, 11, 15, 16\}$. Determine which of the following sets are :

(i) relation (ii) function (iii) neither

A.
$$f_1=ig\{(x,y)\!:\!y=x^2,x\in X,y\in Yig\}$$

B.
$$f_2 = \{(1,1), (2,11), (3,1), (4,15)\}$$

$$\mathsf{C}.\,f_3=\{(1,5),\,(2,9),\,(3,1),\,(4,5),\,(2,11)\}$$

D.
$$f_4 = \{(1,1), (2,7), (3,5)\}$$

Answer:

Watch Video Solution

21. A certain jet plane has an average speed of 500 km per hour. It can carry sufficient fuel for a 5 hour flight.

Define the relation, as a set, between the distance d (in km) and time t (in

hours) for this plane.

Watch Video Solution

22. A certain jet plane has an average speed of 500 km per hour. It can

carry sufficient fuel for a 5 hour flight.

State the range of this relation.

23. A certain jet plane has an average speed of 500 km per hour. It can carry sufficient fuel for a 5 hour flight.

State the range of this relation.

24. A certain jet plane has an average speed of 500 km per hour. It can

carry sufficient fuel for a 5 hour flight.

Is this relation a function?

Watch Video Solution

25. The domain of a function is the set of positive integers less than 12. If y = f(x) = |x - 4|, find all ordered pairs satisfying the function. Graph the function.

26. Let $X = \{2, 3\}$ and $Y = \{1, 3, 5\}$. How many diferent functions are

there from X to Y?

Exercise 2 D

1. A function f given as $f: \{(2, 7), (3, 4), (7, 9), (-1, 6), (0, 2), (5, 3)\}$. Is this function one-one onto?

Interchange the order of the elements in the ordered pairs and form the new relation. Is this relation a function? If it is a function, is it one-one onto.

2. Determine if each function is one-one.

To each person on the earth assign the number which corresponds to his

age.

3. Determine if each function is one-one.

To each country in the world assign the latitude and longitude of its capital.

Watch Video Solution

4. Determine if each function is one-one.

To each country in the world assign the latitude and longitude of its capital.

Watch Video Solution

5. Determine if each function is one-one.

To each country in the world which has a prime minister assign its prime

minister.

6. Let $f: A \rightarrow B$. Find f(A), i.e, the range of f, if f is an onto function.

8. Let $A = \{-1, 1\}$. Let functions f, g and h of A be defined by :

(i) f(x)=x (ii) $g(x) = x^3$ (iii) $h(x) = \sin x$.

Watch Video Solution

9. Given, $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of each of

the following

- (i) an injective mapping from A to B.
- (ii) a mapping from A to B which is not injective.

(iii) a mapping from B to A.

Watch Video Solution

10. Given $A = \{2, 3, 4\}, B = \{2, 5, 6, 7\}$, construct an example of each

the following. A mapping from A to B which is not one-one

Watch Video Solution

11. Given, $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of each of

the following

(i) an injective mapping from A to B.

(ii) a mapping from A to B which is not injective.

(iii) a mapping from B to A.

12. Are the following sets of ordered pairs functions? If so, examine whether the mapping is onto or one-one.

 $\{(x, y), : x \text{ is a person, y is the mother of x}\}$

13. Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective:(i) $\{(x, y) : x \text{ is a person}, y \text{ is the mother of } x\}$ (ii) $\{(a, b) : a \text{ is a person}, b \text{ is an ancestor of } a\}$

Watch Video Solution

14. The function $f: NN \to (N$ is the set of natural numbers) defined by f(n) = 2n + 3is (a) surjective only (b) injective only (c) bijective (d) none of these

15. Let $A = \{x = 0 \le x \le 2\}$ and $B = \{1\}$. Give an example of a function from A to B. Can you define a function from B and A which is onto? Give reasons for your answer.

Watch Video Solution

16. Prove that the function $f\colon R o R,$ $f(x)=x^2+x$ is a many-one into

function.

Watch Video Solution

17. Let $A = \{1, 2, 3\}, B = 4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$

be a function from A to B. Show that f is one - one but not onto.

18. Show that the function $f\colon R o R\colon f(x)=3-4x$ is one-one onto

and hence bijective.

$$\frac{f(16)+f(1)}{f(16)+f(1)}$$

Watch Video Solution

2. If
$$f(x)=rac{x^2}{2}-rac{x^2}{2}+x-16$$
, find $figg(rac{1}{2}igg)$

Watch Video Solution

3. If $f(x) = 7x^4 - 2x^3 - 8x - 5$ find f(-1)

4. If
$$f(x)=\left\{egin{array}{ccc} 3x-1 & ext{when} & x\leq 0 \\ x+1 & ext{when} & x>0 \end{array}
ight.$$
 , find f(-1) and f(0).

Watch Video Solution

5. If
$$f(x) = \log igg(rac{1-x}{1+x} igg)$$
 , show that $f(a) + f(b) = figg(rac{a+b}{1+ab} igg)$

Watch Video Solution

6. If
$$f(x) = 2x\sqrt{1-x^2}$$
, then show that $f\left(\sin\frac{x}{2}\right) = \sin x$.

Watch Video Solution

7. If $f(x) = \cos(\log x)$, then prove that

$$figg(rac{1}{x}igg).\ figg(rac{1}{y}igg) - rac{1}{2}igg[figg(rac{x}{y}igg) + f(xy)igg] = 0$$
8. If
$$y=f(x)=rac{5x+3}{4x-5}$$
 , then show that f(y)=x.

Watch Video Solution

9. If $f(x) = x^2 + kx + 1$, for all x and if it is an even function, find k.

Watch Video Solution

10.
$$f(x) = x^3 - (k-2)x^2 + 2x$$
, for all x and if it is an odd function, find

k.

11. Is there a function f which is both even and odd?

- 12. The function $f(x) = \log \left(x + \sqrt{x^2 + 1}
 ight)$, is
- (a) an even function
- (b) an odd function
- (c) a periodic function
- (d) Neither an even nor an odd function.

Watch Video Solution

13. Prove that $f(x) = (1/x) \log \sqrt{x + \sqrt{x^2 + 1}}$ is an even function.

Watch Video Solution

Exercise 2 F

1. The range and domain of function $f(x) = rac{3}{x} + 1$ are subsets of A and В

respectively,

where

$$A - \left\{ -rac{1}{2}, 0, rac{2}{3}, rac{6}{7}, 1
ight\} ext{ and } B = \left\{ -5, 0, 4rac{1}{2}, 5, 5rac{1}{2}
ight\}.$$
 List the

elements of the function as ordered pairs.

Watch Video Solution

2.
$$A=\{-2,\ -1,1,2\}$$
 and $f=\left\{igl(x,rac{1}{x}igr),x\in A
ight\}$

List the range of f

Watch Video Solution

3.
$$A=\{-2,\ -1,1,2\}$$
 and $f=\left\{\left(x,rac{1}{x}
ight),x\in A
ight\}$

List the range of f

Watch Video Solution

4.
$$A=\{-2,\ -1,1,2\}$$
 and $f=\left\{\left(x,rac{1}{x}
ight),x\in A
ight\}$

Is f a function?

5. $f: x \rightarrow \text{highest prime factor of x.}$

Find the range of f when the domain is $\{12, 13, 14, 15, 16, 17\}$.

Watch Video Solution	Watch Video Solution		
----------------------	----------------------	--	--

6. $f: x \rightarrow \text{highest prime factor of x.}$

State a domain of five integers for which the range is (3).

Watch Video Solution

7. $f: x \rightarrow \text{highest prime factor of x.}$

A set of positive integers is called S. What can be said about these

integers if (f)(S)=S?

8. A function f is defined on the set of real numbers as follows :

$$f(x) = \left\{egin{array}{ccc} 1+x & 1 \leq x < 2 \ 2x-1 & 2 \leq x < 4 \ 3x-5 & 4 \leq x < 6 \end{array}
ight.$$

(i) Find the domain of the function.

(ii) Find the range of the function.

(iii) Find f(4).

(iv) Is the function one-one ? Justify.

9. A function f is defined on the set of real numbers as follows :

$$f(x) = \left\{egin{array}{ccc} 1+x & 1 \leq x < 2 \ 2x-1 & 2 \leq x < 4 \ 3x-5 & 4 \leq x < 6 \end{array}
ight.$$

(i) Find the domain of the function.

(ii) Find the range of the function.

(iii) Find f(4).

(iv) Is the function one-one ? Justify.

10. A function f is defined on the set of real numbers as follows :

$$f(x) = \left\{egin{array}{ccc} 1+x & 1 \leq x < 2 \ 2x-1 & 2 \leq x < 4 \ 3x-5 & 4 \leq x < 6 \end{array}
ight.$$

(i) Find the domain of the function.

(ii) Find the range of the function.

(iii) Find f(4).

(iv) Is the function one-one ? Justify.

11. Let f be a function whose domain is the set of all real number. If

f(x) = |x| - x, what is the range of f?

12. Write the domain of the following real functions

$$\sqrt{9-x^2}$$

13. Write the domain of the following real functions

$$\sqrt{1-2x-3x^2}$$

Watch Video Solution

14. Write the domain of the following real functions

 10^x

Watch Video Solution

15. Write the domain of the following real functions

$$\frac{1}{\sqrt{x^2-7}}$$

16. Write the domain of the following real functions

$$\log(2-3x)$$

Watch Video Solution

17. Write the domain of the following real functions

$$\log(\sqrt{x-4}+\sqrt{6-x})$$

Watch Video Solution

18. The domain of the function
$$f(x) = \left[\log_{10}\!\left(rac{5x-x^2}{4}
ight)
ight]^{1/2}$$
 is

Watch Video Solution

19. Write the domain of the following real functions

$$\sin^{-1} \Bigl[\log_2 \Bigl(rac{x}{2} \Bigr) \Bigr]$$

20. Find the range of the function

|x-3|

21. Find the domain and range of each of the following functions

 $\sqrt{x-5}$

Watch Video Solution

22. Find the range of each of the following functions

$$\cos\left(\frac{x}{3}\right)$$

23. Find the range of function

 $\frac{x+1}{|x+2|}$

24. Find the range of each of the following functions

$$\mathrm{sec} \Big(rac{\pi}{4} \mathrm{cos}^2 \, x \Big), \infty < x < \infty$$

Watch Video Solution

25. Find the range of each of the following functions

 $\frac{x^2+x+2}{x^2+x+1}$

26. Find the range of the following functions.

$$y=rac{x^2}{1+x^2}$$

27. Find the range of each of the following functions: $f(x) = \frac{1}{\sqrt{x-5}}$ (ii)

$$f(x)=\sqrt{6-x^2}$$
 (iii) $f(x)=rac{x}{1-x^2}$ (iv) $f(x)=rac{3}{2-x^2}$

Watch Video Solution

28. Find the domain and range of the function $rac{x^2-4}{x-2}$

Watch Video Solution

29. If the domain of the function $f(x) = \frac{|x|}{x}$ be [3, 7] then its range is

A. [-1,1]

B. [-1,1]

C. {1}

D. $\{ -1 \}$

4. Draw the graph of function. $y=ig|4-x^2ig|,\ -3\leq x\leq 3.$

5. Graph each function. $y=|x|+x,\;-2\leq x\leq 2$

Watch Video Solution

6. Graph function. y = |x + 2| + x

Watch Video Solution

7. Copy and complete this table of values :

x	-2	-I	0	1 \	2	3
3×	0.1	0.3	1			

8. Draw the graph $y=3^x$ on squared paper, for $-2\leq x\leq 3$.

11. In the graph of $y=2^x$ and $y=\left(rac{1}{2}
ight)^x$ Which line is the axis of

symmetry in the diagram?

View Text Solution

12. A sketch of the graph $y=a\log_4(x+b)$ is shown. `Find the values of a

and b.

13. Diagram (i) shows the curve $y = \log_a x$. What is the value of a?

14. Diagram (ii) shows the curve $y=\log_{10}(x+p).$ What is the value of p?

17. The sketch shows part of the graph $y = a \log_2(x - b)$. Find the values

of a and b.

18. Sketch the graphs y=4-x and $y = \log_{10} x$ on the same diagram.

20. Sketch the graphs y=4-x and $y = \log_{10} x$ on the same diagram.

Watch Video Solution

21. Sketch the graphs y=4-x and $y = \log_{10} x$ on the same diagram.

22. Sketch the graphs. $y = \log_2 x$

27. Sketch the graphs. $3\log_4 x$

28. For -2 < x < 1, draw the graph of $y = 2^x$ (use 1 cm =1 unit on both

axes). Use this graph to solve $2^x = 2x$.

Watch Video Solution

29. Complete the following table for $y = 4^x$. Enter the values of x and y

correct to 1 decimal place...

x	-2	-1		0.5	0.75
у			1		

Coyp the table on your answer book and enter the values there.

30. Taking 4 cm =1 unit on both axes, draw the graph of $y = 4^x$ for

$$0.75 \geq x \geq -2$$

Watch Video Solution

33. Sketch the graph of the following rational functions

$$y=rac{x+3}{x-2}$$

34. Sketch the graph of the following rational functions

$$y = \frac{6}{x - 6}$$
Watch Video Solution
35. Sketch the graph of the following rational functions

 $y = \frac{6}{x - 6}$

Watch Video Solution

36. Sketch the graph of the following rational functions

$$y = rac{2x+1}{x-3}$$

Watch Video Solution

37. Sketch the graph of the following rational functions

$$y=rac{7-2x}{3x+5}$$

