

MATHS

BOOKS - S CHAND MATHS (ENGLISH)

STRAIGHT LINES

Examples

- 1. The equation of the line containing the point
- $(4,\ -5)$ and parallel to the line joining the points
- (3,7) and (-2,4) is

A.
$$5x + 3y + 27 = 0$$

B.
$$3x - 5y + 27 = 0$$

C.
$$3x - 5y - 37 = 0$$

D.
$$3x - 5y + 37 = 0$$

Answer: D

Watch Video Solution

2. If the perpendicular from the origin to a line meets at the point $(\,-2,9)$ then the equation of the line is

A.
$$2x - 9y + 85$$

B.
$$2x + 9y = 85 = 0$$

C.
$$9x - 2y + 85 = 0$$

D.
$$9x + 2y + 85 = 0$$

Answer: A

Watch Video Solution

3. If the points A(7,3) and C(0,-4) are two opposite vertices of a rhombus ABCD, then the equation of the diagonal BD is

A.
$$x - y - 3 = 0$$

B.
$$x + y + 3 = 0$$

C.
$$x - y + 3 = 0$$

D.
$$x + y - 4 = 0$$

Answer: D

Watch Video Solution

4. The equation of a straight line passes through the point (-3,7) and makes intercepts on the axes equal in magnitude but opposite in sign is

A. (a)
$$x - y - 10 = 0$$

B. (b)
$$x - y + 10 = 0$$

C. (c)
$$x + y + 10 = 0$$

D. (d)
$$x + y - 10 = 0$$

Answer: B

Watch Video Solution

5. If the lines $p(p^2+1)x-y+q=0$ and $(p^2+1)^2x+(p^2+1)y+2q=0$ are perpendicular to the same line, then the value of p is

B. (b) -1

C. (c) 2

D. (d) -2

Answer: B

Watch Video Solution

then the equation of line is

6. If the image of the point (2,1) in a line is (4,3)

(i)
$$x + y + 5 = 0$$

(ii) x - y + 5 = 0

(iii)
$$x + y - 5 = 0$$

(iv)
$$x - y - 5 = 0$$

A.
$$x + y + 5 = 0$$

B.
$$x - y + 5 = 0$$

C.
$$x + y - 5 = 0$$

D.
$$x - y - 5 = 0$$

Answer: C

7. The coordinats of the orthocentre of the triangle whose sides lie along the lines

$$x=0,y=0$$
 and $x+y-1=0$ is

(ii)
$$\left(0, -\frac{8}{3}\right)$$

(iii)
$$(-2,0)$$

(iv)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

$$\mathsf{B.}\left(0,\;-\;\frac{8}{3}\right)$$

C.
$$(-2,0)$$

D.
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

Answer: A

Watch Video Solution

8. The coordinates of circumcentre of the triangle whose vertices are (0,0), (4,0) and (0,-6) is

A. (0,0)

B. (4,0)

C.(0, -6)

D. (2, -3)

Answer: D

$$(a\coslpha,a\sinlpha)$$
 upon the straight line $y=x anlpha+c,00$ is

A. c

B. $c\cos\alpha$

C. $c\sin^2 \alpha$

D. $c\sec^2 lpha$

Answer: B

Watch Video Solution

10. The line $\frac{x}{a}-\frac{y}{b}=1$ cuts the x-axis at P. The equation of the line through P and perpendicular to the given line is

A. (a)
$$x+y=ab$$

B. (b)
$$x + y = a + b$$

C. (c)
$$ax + by = a^2$$

D. (d)
$$bx + ay = b^2$$

Answer: C

Multiple Choice Questions

1. The point on the y-axis which is equidistant from the points $(3,\,2)$ and $(\,-\,5,\,-\,2)$ is

A. (a)
$$(-2,0)$$

B. (b)
$$(0, -2)$$

C. (c)
$$(0, -1)$$

D. (d)
$$(-1, 0)$$

Answer: B

....

Watch Video Solution

2. A circle of diameter 20 units passes through the point (-3, -1). If the centre of a circle of (2lpha-1,3lpha+1), then natural namber lpha is

A. 3

B. 4

C. 2

D. 1

Answer: C

3. If point $C(\,-4,1)$ divides the line segment joining the point $A(2,\,-2)$ and B in the ratio $3\!:\!5$, then the coordinates of B are

A. (a)
$$(-14, 6)$$

B. (b)
$$(6, -14)$$

C. (c)
$$(-14, -6)$$

D. (d)
$$(-6, -14)$$

Answer: A

4. If the points A(-2,-1), B(1,0), C(a,3) and D(1,b) form a parallelogram ABCD, Then the values of a and b are

A.
$$a = -4, b = -2$$

B.
$$a = -4, b = 2$$

C.
$$a = 4, b = 2$$

D.
$$a = 2, b = -4$$

Answer: C

5. If the middle points of the sides of a triangle are (1,1),(2,-3) and (3,2) then the centroid of the triangle is (i) (-2,0) (ii) (0,2) (iii) (3,2) (iv) (2,0)

A. (-2, 0)

B.(0,2)

C.(3,2)

D. (2,0)

Answer: D

6. The vertices of triangle are A(-5,3),B(p-1) and

C(6,q). If the centroid of the ΔABC is $(1,\;-1)$,

then the values of p and q are

(i)
$$p = -2, q = 5$$

(ii)
$$p = 2, q = -5$$

(iii)
$$p=3, q=5$$

(iv)
$$p=\,-\,5,\,q=2$$

A.
$$p=\,-2, q=5$$

$$\mathsf{B.}\, p = 2, q = \,-5$$

$$\mathsf{C.}\,p=3,q=5$$

D.
$$p=\,-5, q=2$$

Answer: B

- **7.** The tangent of the angle between the lines joining the points (-1,2),(3,-5) and (-2,3),(5,0) is
- (i) $\frac{37}{49}$
- (ii) $\frac{49}{37}$
- (iii) $\frac{33}{47}$
- (iv) $\frac{47}{23}$

A.
$$\frac{37}{49}$$

B.
$$\frac{49}{37}$$

c.
$$\frac{23}{47}$$

$\mathsf{D.}\;\frac{47}{23}$

Answer: A

Watch Video Solution

8. If a line joining the points (-2,6) and (4,8) is perpendicular to the line joining the points (8,12) and (x,24), then the value of x is

(ii) 4

(i) 3

(iii) -4

(iv) 2

- **A.** 3
 - B. 4
 - $\mathsf{C.}-4$
 - D. 2

Answer: B

9. If the points (-2,6) and (4,8) is perpendicular to the line joining the points (8,12) and (x,24) then the value of x is

A. (a)
$$\frac{2}{7}$$

D. (d)
$$-4$$

Answer: C

10. If the line through (3,y) and (2,7) is parallel to the line through (-1, 4) and (0,6), then the value of y is (i) -9 (ii) -8 (iii) 8 (iv) 9

A. - 9

B. - 8

C. 8

D. 9

Answer: D

11. The equation of line passing through (2,-3) and making an angle of 120° with positive direction of x- axis is (i) $\sqrt{3}x-y+3-2\sqrt{3}=0$

(ii)
$$\sqrt{3}x + y - 3 - 2\sqrt{3} = 0$$
 (iii)

$$\sqrt{3}x + y + 3 - 2\sqrt{3} = 0$$
 (iv)

$$\sqrt{3}x + y + 3 + 2\sqrt{3} = 0$$

A.
$$\sqrt{3}x-y+3-2\sqrt{3}=0$$

B.
$$\sqrt{3}x+y-3-2\sqrt{3}=0$$

C.
$$\sqrt{3}x+y+3-2\sqrt{3}=0$$

D.
$$\sqrt{3}x+y+3+2\sqrt{3}=0$$

Answer: C

12. The inclination of the line x-y+3=0 with the positive direction of x-axis is (i) 45° (ii) 135° (iii) -45° (iv) -135°

A. 45°

B. 135°

C. -45°

D. -135°

Answer: A

13. The equation of a line whose inclination is $\frac{5\pi}{6}$ and which cuts off an intercept of 4 units on negative direction of y-axis is (i) $x+\sqrt{3}y+4\sqrt{3}=0$ (ii) $x-\sqrt{3}y+4\sqrt{3}=0$ (iii) $x+\sqrt{3}y-4\sqrt{3}=0$ (iv) $x-\sqrt{3}y-4\sqrt{3}=0$

A.
$$x+\sqrt{3}y+4\sqrt{3}=0$$

$$\mathsf{B.}\,x - \sqrt{3}y + 4\sqrt{3} = 0$$

C.
$$x + \sqrt{3}y - 4\sqrt{3} = 0$$

D.
$$x-\sqrt{3}y-4\sqrt{3}=0$$

Answer: A

Watch Video Solution

14. The equation of the line through (-1,5) making an intercept of -2 on y-axis is (i)

$$x+7y+2=0$$
 (ii) $7x+y+2=0$ (iii)

$$x - 7y + 2 = 0$$
 (iv) $7x - y + 2 = 0$

A.
$$x + 7y + 2 = 0$$

B.
$$7x + y + 2 = 0$$

C.
$$x - 7y + 2 = 0$$

D.
$$7x - y + 2 = 0$$

Answer: B

Watch Video Solution

15. The equation of the line which cuts of intercept 4 on x-ais and makes an angle of 60° with the positive direction of the x-axis is

(i)
$$y=\sqrt{3}(x+4)$$

(ii)
$$y = -\sqrt{3}(x-4)$$

(iii)
$$y = \sqrt{3}(x-4)$$

(iv)
$$y=-\sqrt{3}(x+4)$$

A.
$$y = \sqrt{3}(x+4)$$

$$B. y = -\sqrt{3}(x-4)$$

C.
$$y = \sqrt{3}(x-4)$$

D.
$$y=-\sqrt{3}(x+4)$$

Answer: C

16. If the straight line
$$y=mx+c$$
 passes through the points (2,4) and ($-3,6$), then the value of m and c are

(i)
$$m=-rac{2}{5}, c=rac{24}{5}$$
 (ii) $m=rac{2}{5}, c=rac{24}{5}$

C.
$$m=-rac{2}{5}, c=-rac{24}{5}$$

D. $m=rac{2}{5}, c=-rac{24}{5}$

A. $m = -\frac{2}{5}, c = \frac{24}{5}$

B. $m = \frac{2}{5}, c = \frac{24}{5}$

(iii) $m = -\frac{2}{5}, c = -\frac{24}{5}$

(iv) $m=rac{2}{5}, c=-rac{24}{5}$

Answer: A

17. A line passes through P(1,2) such that the portion of the line intercepted between the axes is bisected at P. The equation of the line is

A.
$$x + 2y - 5 = 0$$

B.
$$x - y + 1 = 0$$

C.
$$x + y - 3 = 0$$

D.
$$2x + y - 4 = 0$$

Answer: D

18. The equation of a straight line on which the perpendicular from the origin of the length 2 units and this perpendicular makes an angle of 240° with the x-axis is (i) $x+\sqrt{3}y+4=0$ (ii) $x-\sqrt{3}y+4=0$ (iv) $x+\sqrt{3}y-4=0$

A.
$$x + \sqrt{3}y + 4 = 0$$

$$\mathsf{B.}\,x-\sqrt{3}y+4=0$$

C.
$$x - \sqrt{3}y - 4 = 0$$

D.
$$x + \sqrt{3}y - 4 = 0$$

Answer: A

19. The two lines
$$ax+by+c=0$$
 and $a'x+b'y+c'=0$ are perpendicular if (i) $ab'=a'b$ (ii) $ab+a'b'=0$ (iii) $ab'+a'b=0$ (iv) $aa'+bb'=0$

A.
$$ab' = a'b$$

$$B. ab + a'b' = 0$$

C.
$$ab' + a'b = 0$$

$$\mathsf{D.}\,aa\,'+bb\,'=0$$

Answer: D

20. The angle between lines
$$y=ig(2-\sqrt{3}ig)x+5$$
 and $y=ig(2+\sqrt{3}ig)x+7$ is

A. 30°

B. 45°

C. 60°

D. 90°

Answer: C

21. The ratio in which the line segment joining (-1,1) and (5,7) is divided by the line x+y=4 is

A. 1:2 internally

 $B.\ 1:2$ externally

C. 2:1 internally

D. 2:1 externally

Answer: A

22. If the image of the point (-3,k) in the line

2x+y-2=0 is the point (1,5) then the value of

k is (i) 2 (ii) 3 (iii) -3 (iv) 1

A. 2

B. 3

 $\mathsf{C.}-3$

D. 1

Answer: B

23. The coordinates of the orthocentre of the triangle whose sides lie along the lines

$$x=0,y=0$$
 and $3x-5y+7=0$ is (i) $\left(0,rac{7}{5}
ight)$

(ii)
$$\left(-\frac{7}{3},0\right)$$
 (iii) $\left(0,0\right)$ (iv) $\left(-\frac{7}{5},\frac{7}{5}\right)$

$$A.\left(0,\frac{7}{5}\right)$$

B.
$$\left(-\frac{7}{3},0\right)$$

D.
$$\left(-\frac{7}{5}, \frac{7}{5}\right)$$

Answer: C

24. The coordinates of the circumcentre of the triangle whose vertices are at (0,0),(6,0) and (0,8) is

- A. (a) (6, 0)
- B. (b) (0, 8)
- C. (c) (3, 4)
- D. (d) (0, 0)

Answer: C

25. If the lines $\frac{x}{3} + \frac{y}{4} = 5$ and 3x + ky = 9 are perpendicular to each then the value of k is

$$A. - 4$$

$$B. - 3$$

$$\mathsf{C.} - \frac{1}{2}$$

Answer: A

26. If the lines 2x+y-3=0, 5x+ky-3=0 and 3x-y-2=0 are concurrent, then the value of k is

A.-3

B.-2

C. -1

D. 2

Answer: B

27. The equation of the line passing through (1,2)

and perpendicular to x+y+7=0 is

A.
$$y - x + 1 = 0$$

B.
$$y - x - 1 = 0$$

C.
$$y - x + 2 = 0$$

$$\mathsf{D}.\,y-x-2=0$$

Answer: B

28. If p is the length of perpendicular from the origin on the line $\frac{x}{a}+\frac{y}{b}=1$ and a^2,p^2,b^2 are in

(A)
$$a^4 + b^4 = 0$$

A.P., then

(B)
$$a^4 - b^4 = 0$$

(C)
$$a^2 + b^2 = 0$$

(D)
$$a^2 - b^2 = 0$$

A.
$$a^4 + b^4 = 0$$

$$B. a^4 - b^4 = 0$$

$$\mathsf{C.}\,a^2+b^2=0$$

D.
$$a^2 - b^2 = 0$$

Answer: A

Watch Video Solution

29. The distance of the point $P(1,\,-3)$ from the line 2y-3x=4 is

(B)
$$\frac{7}{13}\sqrt{3}$$

(C)
$$\sqrt{13}$$

(D)
$$\frac{7}{13}$$

$$\mathsf{B.} \; \frac{7}{13} \sqrt{3}$$

C.
$$\sqrt{13}$$

D.
$$\frac{7}{13}$$

Answer: C

Watch Video Solution

30. The coordinates of the foot of the perpendicular from the point (2,3) on the line x+y-11=0 are (i) (-6,5) (ii) (5,6) (iii) (-5,6) (iv) (6,5)

- A. (-6,5)
 - B. (5,6)
 - C. (-5,6)
- D. (6,5)

Answer: B

Watch Video Solution

31. If a vertex of a square is at the point (1, -1) and one of its sides lie along the line

3x - 4y - 17 = 0, then the area of the square is

B. 3 sq. units

C.
$$\frac{1}{2}$$
 sq. units

D. 2 sq. units

Answer: A

Watch Video Solution

32. The equations of the lines which pass through the point (3,-2) and are inclined at 60° to the line

$$\sqrt{3}x+y=1$$
 are (i)

$$y+2=0,\sqrt{3}x-y-2-3\sqrt{3}=0$$
 (ii)

 $x-2=0, \sqrt{3}x-y+2+3\sqrt{3}=0$

 $x-3=0,\sqrt{3}x-y-2-3\sqrt{3}=0$ (iv) none of these

(iii)

A.
$$y+2=0, \sqrt{3}x-y-2-3\sqrt{3}=0$$

B. $x-2=0, \sqrt{3}x-y+2+3\sqrt{3}=0$

C.
$$x - 3 = 0$$
, $\sqrt{3}x - y - 2 - 3\sqrt{3} = 0$

D. none of these

Answer: A

33. If the line $\frac{x}{a}+\frac{y}{b}=1$ passes through the points $(2,\,-3)$ and $(4,\,-5)$ then (a,b) is (i)

$$(1,1)$$
 (ii) $(\,-1,1)$ (iii) $(1,\,-1)$ (iv) $(\,-1,\,-1)$

A. (1, 1)

B. (-1, 1)

C. (1, -1)

D. (-1, -1)

Answer: D

34. The equations of lines passing through the point (1,0) and at distance of $\frac{\sqrt{3}}{2}$ units from the

$$\sqrt{3}x + y - \sqrt{3} = 0, \sqrt{3}x - y\sqrt{3} = 0$$
 (ii)

are

(i)

$$\sqrt{3}x+y+\sqrt{3}=0,\sqrt{3}x-y+\sqrt{3}=0$$
 (iii)

$$x + \sqrt{3}y - \sqrt{3} = 0, x - \sqrt{3}y - \sqrt{3} = 0$$
 (iv)

none of these

origin

A.
$$\sqrt{3}x+y-\sqrt{3}=0,\sqrt{3}x-y\sqrt{3}=0$$

B.
$$\sqrt{3}x+y+\sqrt{3}=0,\sqrt{3}x-y+\sqrt{3}=0$$

C.
$$x+\sqrt{3}y-\sqrt{3}=0, x-\sqrt{3}y-\sqrt{3}=0$$

D. none of these

Answer: A

Watch Video Solution

35. The distance between the lines $y=mx+c_1$ and $y=mx+c_2$ is

A.
$$\dfrac{c_1-c_2}{\sqrt{m^2+1}}$$

B.
$$\dfrac{|c_1-c_2|}{\sqrt{m^2+1}}$$

C.
$$rac{c_2-c_1}{\sqrt{m^2+1}}$$

D. 0

Answer: B

36. Equations of diagonals of the square formed by the lines $x=0,\,y=0,\,x=1$ and y=1 are

A.
$$y = x, x + y = 2$$

B.
$$2y = x, y + x = \frac{1}{3}$$

C.
$$y = x, y + x = 1$$

D.
$$y = 2x, y + 2x = 1$$

Answer: C

37. The point (4,1) undergoes the following two successive transformations

- (i) Reflection about the line y=x
- (ii) Translation through a distance of 2 units along the positive x-axis.

The coordinates of the new point are

- A. (4,3)
- B. (3,4)
- C. (1,4)
- D. $\left(\frac{7}{3}, \frac{7}{2}\right)$

Answer: B

Watch Video Solution

38. The equation ax+by+c=0 represents a straight line

A. for all real numbers a,b and c

B. only when $a \neq 0$

C. only where b
eq 0

D. only when atleast one a and b is non - zero.

Answer: D

39. The ratio in which the line 3x+4y+2=0 divides the distance between the lines 3x+4y+5=0 and 3x+4y-5=0

A. 1:2

B. 3:7

C. 2:3

D. 2:5

Answer: B

Watch Video Solution

40. The tngent of angle between the lines whose intercepts on the axes are a, -b and b -a respectively is

A.
$$\dfrac{a^2-b^2}{ab}$$

B.
$$\frac{b^2-a^2}{2}$$

$$\mathsf{C.}\,\frac{b^2-a^2}{2ab}$$

D. none of these

Answer: C

41. The number of straight lines which are equally inclined to both the axes is

A. 4

B. 3

C. 2

D. 1

Answer: A

42. The circumcentre of the triangle formed by

lines x=0,y=0 and x+y-1=0 is

A. (0,0)

$$\mathsf{B.}\left(\frac{1}{2},\,\frac{1}{2}\right)$$

C. (1,1)

D.
$$\left(\frac{1}{3}, \frac{1}{3}\right)$$

Answer: B

43. The inclination of the line passing through the point (-3,6) and the mid-point of the line joining the points $(4,\;-5)$ and $(\;-2,9)$ is

(i)
$$\frac{\pi}{2}$$

(ii)
$$\frac{\pi}{6}$$

(iii)
$$\frac{\pi}{3}$$

$$\begin{array}{c} \text{(iii)} \ \frac{\pi}{3} \\ \text{(iv)} \ \frac{3\pi}{4} \end{array}$$

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{6}$$

$$\mathsf{C.}\,\frac{\pi}{3}$$

$$\text{D.}~\frac{3\pi}{4}$$

Answer: D

Watch Video Solution

44. The equations of the line with slope $-\frac{3}{2}$ and which is concurrent with lines 4x+3y-7=0 and 8x+5y-1=0 is

(i)
$$3x + 2y - 63 = 0$$

(ii)
$$3x + 2y - 2 = 0$$

(iii)
$$2y - 3x - 2 = 0$$

(iv) none of these

A.
$$3x + 2y - 63 = 0$$

B.
$$3x + 2y - 2 = 0$$

C.
$$2y - 3x - 2 = 0$$

D. none of these

Answer: B

Watch Video Solution

45. If
$$a+b+c=0$$
 then the family of lines

3ax+by+2c=0 passes through the fixed point

(i)
$$\left(-2, \frac{2}{3}\right)$$

(ii)
$$\left(2, \frac{3}{3}\right)$$

(iii)
$$\left(\frac{2}{3},2\right)$$
 (iv) none of these

$$A.\left(-2,\frac{2}{3}\right)$$

B.
$$\left(2, \frac{3}{3}\right)$$
C. $\left(\frac{2}{3}, 2\right)$

Answer: C

46. Write the value of $\theta \in \left(0, \frac{\pi}{2}\right)$ for which area

of the triangle formed by points
$$O(0,0),\ A(a\cos\theta,\ b\sin\theta) and\ B(a\cos\theta,\ -b\sin\theta)$$

is maximum.

A.
$$\frac{\pi}{6}$$

$$\operatorname{B.}\frac{\pi}{4}$$

$$\mathsf{C.}\,\frac{\pi}{3}$$

D. none of these

Answer: B

