©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - S CHAND PHYSICS (ENGLISH)

DIMENSIONS

Additional Solved Problems

1. Check the correctness of the following
equation by the method of dimensions
(i) $v^{2}=u^{2}+2 g s \quad$ (ii) $s=u t+\frac{1}{2} \mathrm{gt}^{2}$
$v=u+\mathrm{gt}$

D Watch Video Solution

2. Check the correctness of the equation
$\frac{1}{2} m v^{2}=m g h$, using dimensions.

D Watch Video Solution

3. Derive an expression using the method of dimensions, the distance travelled by a body
during an interval of time t, if its initial velocity
is u and uniform acceleration is a.

D Watch Video Solution

4. The critical velocity v for a liquid depends upon (a) coefficient of viscosity η (b) density of
the liquid ρ and © radius of the pipe r. Using dimensions derive an expression for the critical velocity.

- Watch Video Solution

5. A freely body acquires a velocity of $g^{x} h^{y}$ after falling through a height h. Using dimensions find the values fo x and y .

- Watch Video Solution

6. It is given that the mass m of the largest stone that can be moved by the folowing river depends upon the velocity v , density ρ and acceleration due gravity g. Using dimensions
show that $m=\frac{k v^{6} \rho}{g^{3}}$.
7. Convert an energy of 1 joule into ergs.

D Watch Video Solution

8. If the velocity of light is taken as the unit of velocity and year as the unit of time find the unit of length?

D Watch Video Solution
9. A gas bubble from an explosion under water oscillates with a period T proportional to $p^{a} d^{b} E^{c}$ where p is the static pressure d is the density of water and E is the total energy of explosion. Find the value of a, b and c.

D Watch Video Solution

10. Check the correctness of the formula using dimensions:

$$
x=a \sin (\omega t+\phi), x-
$$

displacement, α - amplitude, ω angular velocity
ϕ is an angle and it has no dimensions.

D Watch Video Solution

11. The displacement $y(t)$ of a particle depends
on time according in equation
$y(t)=a_{1} t-a_{2} t^{2}$. What is the dimensions of a_{1} and a_{2} ?

- Watch Video Solution

12. The frequency v of the stretched string may
depend on (i) the length of the vibrating
segment 1 (ii) the tension in the string and (iii)
the mass per unit length m. Show that
$v \propto \frac{1}{l} \sqrt{\frac{F}{m}}$.

D Watch Video Solution

13. Using dimensions method show that the speed of sound in a material medium of
modulus of elasticity E and density ρ is
$v \propto \sqrt{\frac{E}{\rho}}$

- Watch Video Solution

14. Using dimensions show that the viscous
force acting on a glass sphere falling through
a highly viscous liquid of coefficient of viscosity η is $F \propto \eta$ av where a is the radius of the sphere and v its terminal velocity.
15. Find the dimensions of (i) force (ii) surface tension and (iii) momentum in terms of frequency, velocity and density as fundamental units.

- Watch Video Solution

16. If area (A), density (D) and force (F) are taken as fundamental quantities, find the dimensional formula for young's modulus.
17. Given the unit of power as 1 million erg/ min, the unit of force as 1000 dynes, unit of time as $1 / 10 \mathrm{~s}$, what is the unit of mass and length.

- Watch Video Solution

18. The period of revolution of a satellite depends upon the radius of the orbit, the mass of the planet and the gravitational
constant. Prove that the square of the period varies as the cube of the radius.

D Watch Video Solution

19. In van der Waal's equations
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$, what are the dimensions of the constants a and b ?

D Watch Video Solution
20. The rotational kinetic energy of a body is given by $E=\frac{1}{2} I \omega^{2}$. Use this equation to get the dimensional formula of I ?

- Watch Video Solution

Short Answer Questions With Answers

1. By knowing dimensions what idea do you get about a physical quantity?
2. What is the difference between a dimensional constant and a dimensionless

constant?

- Watch Video Solution

3. Match the physical quantities given in column I with dimensions expressed interms of mass (M), length (L), time (T) and charge (Q) given in column II and wire the correct answer
against the match quantity in labourar form.

Angular momentum
Latent heat
Torque
Capacitance
Inductance
Resistivity

$$
\begin{aligned}
& \quad \| \\
& M M^{2} T^{-2} \\
& M^{2} Q^{-2} \\
& M^{2} T^{-1} \\
& M L^{3} T^{-1} Q^{-2} \\
& M^{-1} L^{-2} T^{2} Q^{2} \\
& L^{2} T^{-2}
\end{aligned}
$$

D Watch Video Solution

4. Which physical quantities have the same dimensions of $M L^{-1} T^{-2}$?

- Watch Video Solution

5. The calorie is a unit of heat or energy and it equals about 4.2 J where $1 J=1 \mathrm{kgm}^{2} \mathrm{~s}^{-2}$.

Suppose we employ a system of units in which the unit of mass equals $\alpha \mathrm{kg}$, the unit of length equals $\beta \mathrm{m}$ and the unit of time is $\gamma \mathrm{s}$.

Show that the calorie has a magnitude of $4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$ in terms of the new units.
6. Show dimensionally that the pressure is given by (i) energy per unit volume (ii) force per unit area.

- Watch Video Solution

7. What is the dimensional formula of angular velocity?

D Watch Video Solution
8. Name three physical quantities without dimensions.

D Watch Video Solution
9. Name three physical quantities having the same dimensions.

D Watch Video Solution
10. Obtain the dimensions of (1) coefficient of thermal conductivity (2) Gas constant (3) Boltzmann constant (4) Planck's constant.

D Watch Video Solution

Long Answer Questions

1. Explain the uses of dimensional analysis with
one example for each.

- Watch Video Solution

2. What are (i) dimensional constant, (ii) dimensionless constants, (iii) dimensional variables and (iv) dimensionless variables.

D Watch Video Solution

3. Give the limitations of dimensional analysis.

- Watch Video Solution

Short Answer Questions

1. What are dimensions of a physical quantity?

- Watch Video Solution

2. What is the difference between a
dimensional formula and a dimensional equation?
3. What are dimensional variables ?Give examples.

- Watch Video Solution

4. What are dimensionless variables? Why are they called so?
(D) Watch Video Solution
5. g is dimensional constant where as π is the dimensionless constant. Why?

- Watch Video Solution

6. Give the dimensional formula of (i) gravitational constnat (ii) coefficient of viscosity η.

- Watch Video Solution

7. Angle and strain have no dimensions. Why?

D Watch Video Solution

8. Mention the uses of dimensional equations.

- Watch Video Solution

9. What is meant by the principle of homogeneity of dimensions?
10. Check the correctness of the equations (i)
$s=u t+\frac{1}{2} a t^{2} \quad$ (ii) $\quad v^{2}=u^{2}+2 a s \quad$ using dimensions.

- Watch Video Solution

11. Using dimension convert one dyne into newton.
12. Mention the limitation of dimensional analysis.

D Watch Video Solution

Very Short Answer Questions

1. What are the dimensions of angular displacement?
2. What is B the name of dimensional constant
whose dimensions are the same as that of angular momentum.

- Watch Video Solution

3. Give three examples for a quantity which has unit, but still dimensionless.

- Watch Video Solution

4. Do we have quantity which has dimensions but no unit?

D Watch Video Solution
5. What is the principle behind the principle of homogeneity of dimensions?

(Watch Video Solution

1. Check the correctness of the equation
$y=a \sin \frac{2 \pi}{\lambda}(v t-x) \quad$ using \quad dimensional
analysis where y is the displacement of a particle at a distance x from the origin at time t, λ - wavelength v -wave velocity, a- amplitude.

D Watch Video Solution

2. Check the correctness of the equation $v=\frac{K \eta}{r \rho}$ using dimensional analysis, where v
is the critical velocity η is the coefficient of viscosity, r is the radius and ρ is the density?

D Watch Video Solution

3. The displacement of a particle is related to
time by the expression $s=k t^{3}$, what is the dimension of the constant k ?

- Watch Video Solution

4. Using dimensional analysis check the correctness of the equation $T=2 \pi \sqrt{\frac{l}{g}}$, where T is the period of the simple pendulum of length I and g is the acceleration due to gravity.

D Watch Video Solution

5. Check the correctness of the equation
$W=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$ using the dimensional analysis, where W is the work done, m is the
mass of body,u-its initial velocity and v its final velocity.

D Watch Video Solution

6. A student writes the equation for the capillary rise of a liquid in a tube as $h=\frac{\rho g}{2 T \cos \theta}$, where r is the radius of the capillary tube, ρ is the density of liquid, T is
the surface tension and θ is the angle of contact. Check the correctness of the equation using dimensional analysis?

Watch Video Solution

7. Find the which of the following are correct using dimensional analysis.
(i) $t^{2}=4 \pi^{2} a^{3} \quad$ (ii) $\quad t^{2}=\frac{4 \pi^{2} a^{3}}{G}$
$t^{2}=\frac{4 \pi^{2} a^{3}}{G M}$
where t is the time period, a is the radius of the orbit of a planet and M is the mass of sun.

- Watch Video Solution

8. Give the quantities for which the following are the dimensions:
$M^{0} L^{0} T^{-2}$

- Watch Video Solution

9. Give the quantities for which the following are the dimensions:
$M^{1} L^{-1} T^{-2}$
10. Give the quantities for which the following are the dimensions:
$M^{1} T^{-2}$

- Watch Video Solution

11. Give the quantities for which the following are the dimensions:
$M^{1} L^{2}$
12. Give the quantities for which the following are the dimensions:
$M^{-1} L^{3} T^{-2}$

D Watch Video Solution
13. Give the quantities for which the following are the dimensions:
$M^{0} L^{0} T^{0}$

D Watch Video Solution

Selected Problems From Finding The Dimension Of A Physical Quantity

1. The density of the earth is given by $\rho=K g^{x} r^{y} G^{z}$. Obtain the values of x, y and z

- Watch Video Solution

2. The rotaitonal kinetic energy $E=\frac{1}{2} I \omega^{2}$.

Use this equation to get the dimensional
formula for ω, where I is the moment of inertia
and ω is the angular velocity.

- Watch Video Solution

3. The velocity of a particle change with time according to the relation $v=x t+y t^{2}+z$.

Give the dimensions of x, y and z if v is in $m s^{-1}$ and t is in s .

- Watch Video Solution

Selected Problems From Derivation Of Formulae

 Using Dimensions1. The acceleration due to gravity at a piece depends on the mass of the earth M, radius of the earth R and the gravitational constant G . Derive an expression for g ?

D Watch Video Solution

2. The time period of oscillation T of a small drop of liquid under surface tension depends upon the density ρ, the radius r and surface
tension σ. Using dimensional analysis show
that $T \propto \sqrt{\frac{\rho r^{3}}{\sigma}}$

- Watch Video Solution

3. The escape velocity of a body from the surface of the earth depends upon (i) the mass of the earth M, (ii) The radius of the eath

R, and (iii) the gravitational constnat G. Show that $v=k \sqrt{\frac{G M}{R}}$, using the dimensional analysis.
4. The rate of a flow V a of liquid through a capillary under a constant pressure depends upon (i) the pressure gradient (P/I) coefficient of viscosity of the liquid η (iii) the radius of the capillary tube r. Show dimesionally that the rate of volume of liquid flowing per sec $\operatorname{V} \propto \operatorname{Pr}^{\wedge} 4 / \eta \mid$
5. Derive an experession for the period of oscillation of a mass attached to a spring executing simple harmonic motion. Given that the period of oscillation depends on the mass m and the force constant k, where k is the force required to stretch the spring by unit length?

(D) Watch Video Solution

Selected Problems From Conversions Of One Systems Of Units Into Another

1. Using dimensional analysis show that $1 \mathrm{~N} / \mathrm{m}^{2}=10$ dyne $/ \mathrm{cm}^{2}$.

D Watch Video Solution

2. The value of atmosphere pressure is 10^{6} dynes $/ \mathrm{cm}^{2}$. Find the value in S.I. using dimensional analysis?

- Watch Video Solution

3. Find the value 15 joule in a system which has
$10 \mathrm{~cm}, 100 \mathrm{gm}$ and 20 sec as a fundamental units?

- Watch Video Solution

4. Using dimensional analysis obtain the value of density of water in S.I. In C.G.S system density of water is $1 \mathrm{gm} / \mathrm{cm}^{3}$.
5. Using dimensional analysis show that if the units of length and force are each doubled, the units of energy is increased four times?

D Watch Video Solution

6. Obtain the dimensions of linear momentum
and surface tension in terms of velocity (v), density (ρ) and frequency (ν) as fundamental units.
7. A man walking briskly in rain with speed v must slant his umbrella forward making an angle θ with the vertical. A student derives the following relation between θ and v as tan $\theta=v$ and checks that the relation has a correct limit when $v \rightarrow 0, \theta \rightarrow 0$ as expected. Do you think the relation can be correct? If not guess out the correct relation.

D Watch Video Solution

8. If velocity of light, acceleration due to gravity and normal atmospheric pressure are taken as the fundamental units, what will be the units of mass, length and time, given velocity of light as $3 \times 10^{8} \mathrm{~ms}^{-1}$ acceleration due to gravity $10 m s^{-2}$ and normal pressure $=10^{5} \mathrm{Nm}^{-2}$
9. If acceleration due to gravity g, the speed of
light c and pressure p are taken as the
fundamental quantities then find the dimensions of length.

D Watch Video Solution

