©゙’doubtnut

PHYSICS

BOOKS - S CHAND PHYSICS (ENGLISH)

SAMPLE QUESTION PAPER - 01

Section A

1. Choose the correct alternative (a), (b), (c) or (d) for each of the questions given below :

Which of the following is not a unit of time ?
A. light year
B. ns (nano second)
C. μs (micro second)
D. minutes

Answer: A

D Watch Video Solution

2. Choose the correct alternative (a), (b), (c) or (d) for each of the questions given below :

A copper and a steel wire having same length and diameter are joined end-to-end. When a force is
applied at the end of the wire, the net length of the wire increases by 1 cm . The wires will have :
A. same stress and same strain
B. different stresses and different strain
C. different stresses and same strain
D. different strains and same stess

Answer: D

D Watch Video Solution

3. Choose the correct alternative (a), (b), (c) or (d) for

 each of the questions given below :For an adiabatic change of a perfect gas the relation between pressure and volume is :
A. $P V^{\gamma}=$ constant
B. $P^{\gamma} V=$ constant
C. PV = constant
D. $P V^{\gamma-1}=\mathrm{constant}$

Answer: A

- Watch Video Solution

4. Choose the correct alternative (a), (b), (c) or (d) for each of the questions given below :

Which of the following is approximately the rate of solar energy (in KW) falling per m^{2} on the surface area of the earth ?
A. 1
B. 100
C. $0 \cdot 1$
D. $0 \cdot 0001$

Answer: A
5. Choose the correct alternative (a), (b), (c) or (d) for each of the questions given below :

The distance between successive nodes and antinodes is :
A. $\frac{\lambda}{2}$
B. λ
C. $\frac{\lambda}{4}$
D. 2λ

Answer: C
6. (Answer the following questions briefly and to the point :)

Give the dimensions of Boltzmann.s constant.

- Watch Video Solution

7. (Answer the following questions briefly and to the point :)

A bullet fired vertically upward falls at the same place after some time. What is the displacement of the bullet?
8. (Answer the following questions briefly and to the point :)

A constant retarding force of 100 N is applied to a body of mass 10 kg moving initially with a speed of $30 \mathrm{~ms}^{-1}$. What is the retardation of the body?

- Watch Video Solution

9. (Answer the following questions briefly and to the point :)

State the Principle of Continuity of fluids.
10. (Answer the following questions briefly and to the point :)

What is the relation between the pressure and the kinetic energy per unit volume of gas?

- Watch Video Solution

11. (Answer the following questions briefly and to the point :)

Give any one essential feature of Carnot.s ideal heat engine.
12. (Answer the following questions briefly and to the point :)

Which physical quantity remains conserved in Simple Harmonic Motion ?

- Watch Video Solution

Section B

1. Round off 3.7846 up to 3 significant figures.

- Watch Video Solution

2. What is absolute error?

- Watch Video Solution

3. Give the limitations of dimensional analysis.

D Watch Video Solution

4. Write an expression for magnitude of the resultant vector.\vec{R}. of two vectors \vec{A} and \vec{B} acting at a point. When will this resultant vector.\vec{R}. be maximum ?
5. A box of 50 kg is lifted by a man of mass 60 kg to a height of 50 m . Calculate the work done by the man.

- Watch Video Solution

6. How much mass of water can be lifted by a pump motor of 9.8 kW in one minute to a height of 5 m ?

D Watch Video Solution
7. A shot fired from cannon explodes in air. What will be the changes in the momentum and the kinetic energy ?

- Watch Video Solution

8. Two bodies of masses 0.5 kg and 1 kg are lying in the $X-Y$ plane at points $(-1,2)$ and $(3,4)$ respectively. Locate the centre of mass of the system.
9. Define orbital velocity. Obtain the relation between orbital velocity and acceleration due to gravity g, for a satellite orbiting very close to the surface of the earth.

D Watch Video Solution

10. Define Bulk modulus of elasticity and write an expression in terms of pressure .P., volume .V. and change in volume $. \Delta V .$.

- Watch Video Solution

11. With reference to Elasticity, define the following terms :
12. Stress
13. Strain

- Watch Video Solution

12. What is magnus effect ? Write any one application of this effect.

- Watch Video Solution

13. State the First Law of thermodynamics. Name the physical quantity that remains conserved in this law?

- Watch Video Solution

14. An electric heater supplies heat to a system of gas at a rate of 150 W . The system performs work at a rate of $50 \mathrm{~J} / \mathrm{s}$. At what rate is the internal energy increasing ?
(D) Watch Video Solution
15. Calculate the acceleration .a. of the system and the tensions T_{1} and T_{2} in the strings as shown in figure.
(Assume that the table and the pulleys are frictionless and the string is massless and inextensible).

- Watch Video Solution

2. A body of mass 50 kg is hung by a spring balance in a lift. Calculate the reading of the balance when :

The lift is ascending with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$.
3. A body of mass 50 kg is hung by a spring balance in a lift. Calculate the reading of the balance when :

The lift is descending with a constant velocity of 2 m / s.

- Watch Video Solution

4. A body of mass 50 kg is hung by a spring balance in a lift. Calculate the reading of the balance when :

The lift is ascending with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$.

- Watch Video Solution

5. Derive an equation for displacement of a projectile fired at an angle θ from the ground.

D Watch Video Solution

6. When a cyclist negotiates a circular path of radius
.r. with velocity .v., making an angle θ with the vertical,
show that $\tan \theta=\frac{v^{2}}{r g}$.

- Watch Video Solution

7. A fly wheel is rotating at a speed of 160 r.p.m.
whose weight is 20 kg and its centre of mass at a
distance of 0.01 m from the axis of rotation. Calculate
moment of inertial of the fly wheel.

- Watch Video Solution

8. A fly wheel is rotating at a speed of 160 r.p.m. whose weight is 20 kg and its centre of mass at a distance of 0.01 m from the axis of rotation. Calculate :
the energy stored in the fly wheel.

D Watch Video Solution

9. Calculate the height to which the water will rise in
a capillary tube of 1.5 mm diameter (surface tension of water $=74 \times 10^{-3} \mathrm{Nm}^{-1}$, angle of contact between water and glass $=0^{\circ}$).

D Watch Video Solution

10. Plot a graph of terminnal velocity versus time.

- Watch Video Solution

11. A soap film is on a rectangular wire ring of size 2
$\mathrm{cm} \times 3 \mathrm{~cm}$. If the size of the film is changed to 3 cm
$\times 3 \mathrm{~cm}$, calculate the work done in this process.
(The surface tension of soap solution is
$\left.3.0 \times 10^{-2} \mathrm{Nm}^{-1}\right)$.

- Watch Video Solution

12. How does the surface tension a liquid vary with increase in temperature ?

- Watch Video Solution

13. Derive Newton's law of cooling to show that the rate of loss of heat from the body is proportional to
the temperature difference between the body and its surroundings.

- Watch Video Solution

14. 16 tuning forks are arranged in the order of decreasing frequency. Any two successive forks gives 5 beats per second when sounded together. If the first tuning fork gives the octave of the last, then determine the frequency of the last fork.
15. The distance of the planet Jupiter from the Sun is
5.2 times that of the Earth. Find the period of Jupiter's revolution around the Sun.

- Watch Video Solution

2. Obtain an equation for the period of revolution of an artifical satellite revolving at height .h. from the surface of Earth.

- Watch Video Solution

3. Calculate the area covered per second $\left(m^{2} s^{-1}\right)$ by the Moon for one complete revolution round the Earth (distance of Moon from Earth $=3.845 \times 10^{8}$ and period of revolution of Moon $=27 \frac{1}{3}$ days).

- Watch Video Solution

4. Obtain an expression for the gravitational potential.

- Watch Video Solution

5. If $\vec{A}=-\hat{i}+3 \hat{j}+2 \hat{k}$ and $\vec{B}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ then find the value of $\vec{A} \times \vec{B}$.

- Watch Video Solution

6. Using the second law of motion show that impulse is equal to the change in momentum.

- Watch Video Solution

> 7. Calculate the work done when
> $\vec{F}=(-5 \hat{i}+3 \hat{j}+2 \hat{k}) N$ and $\vec{s}=(3 \hat{i}-\hat{j}+2 \hat{k}) m$
acting in same direction.
8. Show with the help of a vector diagram that the work done is a scalar product of force and displacement.
(D) Watch Video Solution
9. Derive an equation for the first mode of vibration of an air column in a closed organ pipe.
10. What is the phase difference between the incident wave and the reflected wave in the following
?

1. Wave reflected from rigid boundary.
2. Wave reflected from free boundary.

D Watch Video Solution

11. Derive an equation for the first mode of vibration of an air column in an open organ pipe.
12. State any two characteristics of a plane progressive wave.
