©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - S CHAND PHYSICS (ENGLISH)

SELF ASSESSMENT PAPER 01

Section A Choose The Correct Alternative

1. The dimensional formula of $m c^{2}$ is :
A. $\left[M L T^{-1}\right]$
B. $\left[M L^{2} T^{-2}\right]$
C. $\left[M L^{2} T^{-1}\right]$
D. $\left[M L^{2} T^{2}\right]$

Answer:

D Watch Video Solution

2. A train is 100 m long and is moving with a uniform velocity of $54 \mathrm{Km} / \mathrm{h}$. The time taken by
it to cross the bridge 150 m long is :
A. 10 s
B. $50 / 3 \mathrm{~s}$
C. $20 / 3$ s
D. None of these

Answer:

D Watch Video Solution
3. A block of mass 20 kg is on a horizontal
plane of a coefficient of friction 0.5 . by
applying 6.0 newton force on it, frictional force
will be $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.
A. 10 newton
B. 6 newton
C. 16 newton
D. 4 newton

Answer:
(Watch Video Solution
4. When water freezes the distance between its molecules :
A. decreases
B. increases
C. remain unchanged
D. becomes zero

Answer:

D Watch Video Solution
5. The radius of gyration of a spherical shell about its diameter is:

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{5}{3}} R \\
& \text { B. } \sqrt{\frac{3}{5}} R \\
& \text { C. } \sqrt{\frac{2}{5}} R \\
& \text { D. } \sqrt{\frac{2}{3}} R
\end{aligned}
$$

Answer:

D Watch Video Solution

1. Two particles of same mass are revolving in circular paths having radii r_{1} and r_{2} with the same speed. Compare their centripetal forces.

D Watch Video Solution

2. Under what condition the sum and difference of two vectors will be equal in magnitude?

3. What is the order of mass of our universe?

D Watch Video Solution

4. What is the location of the centre of mass of a uniform triangular lamina?
(Watch Video Solution
5. Write the coefficient of thermal coonductivity of a perfect heat conductor and that of a perfect heat insulator.

D Watch Video Solution

6. What is called reciprocal of bulk modulus of elasticity?

- Watch Video Solution

7. Explain the meaning of force-constant of a spring.
(Watch Video Solution

Section B Answer All Questions

1. Subtract 98.767 gm from 172.4 kg giving the result in appropriate significant figures.
2. Write the dimensions of a and b in the
relation,$P=\frac{b-x^{2}}{a t}$, where P
is power x is distance and t is time

- Watch Video Solution

3. Why is it difficult to walk on solid ice?

- Watch Video Solution

4. Nuclear fission and fusion are examples of conversion of mass into energy. Is strictly speaking mass converted into energy even in an exothermic chemical reaction ?

- Watch Video Solution

5. What percentage of kinetic energy of a moving particle is transferred to a stationary particle it strikes when the stationary particle
has a mass (a) 19 times (b) equal to (c) $1 / 19$ times the mass of the moving particle ?

D Watch Video Solution

6. Reason of weightlessness in a satellite is

D Watch Video Solution

7. Two wires P and Q are equally thick and made of the same material but the length of Pis twice that of Q
(a) Which wire will have a greater extension for a given load?
(b) Which one will undergo a greater strain ?

D Watch Video Solution

8. To empty an oil tin, two holes are made, why
?

D Watch Video Solution
9. What do you understand by cyclic process ?
10. What do you mean by internal energy (U) of a gas?

- Watch Video Solution

11. "A body with larger reflectivity is a poor emitter". Why?

- Watch Video Solution

12. The length of an organ pipe open at both ends is 0.5 m . Calculate the fundamental
frequency of the pipe, if the velocity of sound in air be $350 \mathrm{~m} / \mathrm{s}$. If one end of the pipe is closed then what will be the fundamental frequency?

- Watch Video Solution

13. What do you understand by restoring force acting on a vibrating body. Give one example.

Section C Answer The Following

1. What is a plane progressive simple harmonic wave ? Establish equation for this wave in two different forms.

- Watch Video Solution

2. A string of mass 2.5 kg is under tenstion of

200 N . The length of the stretched string is
20.0. If the transverse jerk is struck at one end of the string, the disturbance will reach the other end in

- Watch Video Solution

3. Distinguish between Centrifugal and centripetal forces. Give examples.

- Watch Video Solution

4. "Friction is a necessary evil". Why?

D Watch Video Solution

5. What are conservative and non-conservative
forces ? Explain with examples. Mention some of their properties.

D Watch Video Solution
6. A hoop of radius 2 m weighs 100 kg . It rolls
along horizontal floor so that its centre of mass has a speed of $20 \mathrm{cms}^{-1}$. How much work has to be done to stop it?

- Watch Video Solution

7. Define angular momentum, write its unit and obtain relation for angular momentum in terms of moment of inertia and angular velocity.
8. Define thermal conductivity. Give its S.I. unit and dimensional formula.

D Watch Video Solution

9. The following sets of values for C_{V} and C_{P}
of a gas have been reported by different students. The units are cal mole ${ }^{-1} K^{-1}$. Which of these sets is most reliable?

Secion D Answer The Following

1. Define frictional force and explain it by taking an example. Plot a graph of frictional force against applied force and explain why kinetic friction is lesser than static friction
2. An aeroplane of mass $10,000 \mathrm{~kg}$ requires a speed of $20 \mathrm{~ms}^{-1}$ for take-off run of 100 m on
the ground. The coefficient of kinetic friction between the wheels of the plane and ground is 0.3 . Assume that the plane accelerates uniformly during the take off. Determine the minimum force required by the engine of the plane to take off $\left(g=10 m s^{-2}\right)$.

D Watch Video Solution

3. Two bodies of masses m 1 , and m 2 , moving with velocity $u 1$, and $u 2$, respectively in the same direction collide with each other elastically. Calculate their velocities after the collision. Discuss what happens when
(i) Both the colliding bodies have the same mass.
(ii) One of the bodies is initially at rest.
(iii) A light body collides with a heavy body at rest
(iv) A heavy body collides with a light body at rest

- Watch Video Solution

4. A body falls on the ground from a height of

10 m and rebounds to a height of 2.5 m calculate (i) the percentage loss of kinetic energy of the body during the collision with the ground (ii). The ratio of the velocities of the body just before and just after hte collision.
5. Define longitudinal stress and longitudinal
strain and show that work done per unit volume of a stretched wire is $\frac{1}{2}$ stress \times strain.

D Watch Video Solution

6. The Marina trench is located in the pacific ocean and at one place it is nearly eleven k.m. beneath the surface of water. The water pressure at the bottom of the trench is about 1.1×10^{8} Pa. A steel ball of initial volume
$0.32 \mathrm{~m}^{3}$ is dropped into the ocean and falls to
the bottom of the trench. What is the change in the volume of the ball when it reaches the bottom ? Bulk modulus of steel is 160 GPa .
