

PHYSICS

BOOKS - S CHAND PHYSICS (ENGLISH)

SELF ASSESSMENT PAPER 4

Section A Choose The Correct Alternative

1. Two cars of masses m_1 and m_2 are moving in circles od radii r_1 and r_2 . Their speeds are such that they complete one revolution in the same time. The ratio of their angular speed is :

A. $m_1 : m_2$

B. $r_1: r_2$

C. 1:1

D. $m_1r_1:m_2r_2$

Answer:

Watch Video Solution

2. The following particles are moving with the same velocity. Which particle has maximum momentum ?

A. β particle

B. proton

C. α particle

D. neutron

Answer:

3. If a particle is displaced by a diastance $2\hat{i} + 3\hat{j} + 5\hat{k}$ m by applying a force $5\hat{i} + 2\hat{j} + 3\hat{k}$ N, then work done

A. 31 J

 $\mathsf{B.}\,20\mathsf{J}$

C. 60 J

D. 70 J

Answer:

4. If force F is applied on a body and it moves with a velocity v, the power will be

A. F/v

 $\mathrm{B.}\, F \times v$

 $\mathsf{C.}\,F\,/\,v^2$

D. $F imes v^2$

Answer:

5. The dimensional formula for modulus of rigidity is

A.
$$\left[ML^{-1}T^{-2}
ight]$$

- B. $\left[MLT^{-1}\right]$
- C. $\left[MLT^{-2}\right]$
- D. $\left[ML^{-1}L^{-1}\right]$

Answer:

Watch Video Solution

Section A

1. Why does the electric fan continue to rotate for some

time after the current is switched off?

3. Write the formula of centripetal acceleration of a particle moving on a circular path in terms of the angular velocity.

4. In which motion momentum change but kinetic energy does not ?

Watch Video Solution
5. Can two streamlines in a flowing liquid cross each other
?
Watch Video Solution

6. Antiseptic solution used to wash cuts and wounds in the body have surface tension lower than water. What is its advantages ?

2. Two bodies of masses M and m are allowed to fall from the same height. It the resistance for each be the same, then, will both the bodies reach the earth simultaneously

?

3. Distinguish between sliding friction and rolling friction.

Watch Video Solution

4. (a) Two protons are brought towards each other. Will the potential energy of the system decrease or increase ? If a proton and an electron be bought nearer, then ?

6. Explain the concept of torque. Write its unit and dimensions.

7. A material beaks up under a stress of $20 imes10^5N/m^2$. If

the density of the material is $2.5 imes10^3 kg\,/\,m^3$, calculate

the length of a wire made of this material, which on hanging may break under its own weight. $\left(g=9.8m\,/\,s^2
ight)$

water proof. Explain why ?

10. A mecury drop of radius 1 cm is sprayed into 10^5 droplets of equal size. Calculate the increase in surface energy if surface tension of mercury is $35 \times 10^{-3} N/m$.

11. For an oscillating pendulum

What is the direction of acceleration of the bob at

(a) The mean position ? The end point ?

(b) Is the tension is the string constant throughout the

oscillation ? If not, when is it

(i) The least ?

(ii) The greatest ?

12. "The shape of a pulse getr distorted during propagation in a dispersive medium." Why?

13. The frequency of the first overtone of a closed organ pipe is the same as that of the first overtone of an open pipe. What is the ratio between their lengths ?

1. (a) Taking equation of a palne progressive wave as $y = \alpha \sin \frac{2\pi}{\gamma} (vt - x)$. Write down the expression for the paticle velocity. Show that the particle veloity at a point =

wave velocity \times slope of the displacement curve at the point

Watch Video Solution

2. (b) Write the equation of a progressive wave propagating along the positive x-direction, whose amplitude is 5 cm, frequency 250 Hz and velocity $500ms^{-1}$

3. A 10 g bullet is fried at a plank od wood with a speed of 200m/s. After passing through the plank which is 1.0 m thick the speed of the bullet reduces to 100m/s. Find the average resistance offered by the plank.

4. Find the scalar and vector products of two vectors
$$\overrightarrow{A} = (3\hat{i} - 4\hat{j} + 5\hat{k})$$
 and $\overrightarrow{B} = (-2\hat{i} + \hat{j} - 3\hat{k})$.

5. Explain the meaning of kinetic energy. With examples obtain an expression for the kinetic energy of a body moving with a uniform velocity.

Watch Video Solution

6. Obtain a formula for the variation of 'g' below the surface of earth. Hence show that 'g' vanishes at the centre of earth.

7. If the earth were a perfect sphere of radius $6.37 imes10^6m$

, rotating about its axis with a period of 1 day

 $ig(=8.64 imes10^6sig)$, how much would the acceleration due

to gravity differ from the poles to the equator.

8. What is an ideal (or perfect) gas ? Under what condition of pressure and temperature can a gas be assumed as an ideal gas ? Determine the gas constant for one gram molecule of a gas.

Watch Video Solution

9. An oxygen cylinder having volumn 30 litre shows a initial gauge pressure 15 atm and temperature $27^{\circ}C$. Some oxygen is taken out from the cylinder, so that the gauge

pressure comes down to 11 atm and temperature comes down to $17^{\circ}C$. What amount of gas was taken out from the cylinder ?

Section D

1. (a) Write a equation of motion in different states and derive the relation :

$$s=u+rac{1}{2}a(2t-1)$$

Where, s is the distance covered in $t^{
m th}$ second, u is initial

velocity and a is uniform acceleration.

2. A rocket which is sent to establish a satellite in its orbit acquires a velocity of $2.9 \times 10^4 km/h$ in 2.05 minutes. (i) Determine its average acceleration in km/h^2 (ii) if it has enough fuel to go on for an hour with the same acceleration, then how much velocity will it attain ? Assume that its initial velocity was zero

(iii) How much distance will it travel in this hour ?

3. (a) Write rules of friction. Friction force decreases in ball bearings because balls are spherical. Does it mean frictional force depend upon area ? Explain.

4. A bullet of mass 10 g is fired horizontally into a 4 kg wooden block resting on a horizontal surface. The coefficient of kinetic friction between the block and the surface is 0.25. The bullet is embadded the block and the combination moves a distance of 20 m before coming to rest. Find the speed of the bullet just before striking the block. $(g = 10m/s^2)$

5. (a) What is meant by the principle of continuity ? Show that velocity of a liquid is inversely proportional to the area of cross-section of a pipe or tube.

6. Water is flowing continuously from a tap having an internal diameter 8×10^{-3} m. The water velocity as it leaves the tap is $0.4ms^{-1}$. The diameter of the water stream at a distance 2×10^{-1} m below the tap is close to