© ${ }^{\text {T doubtnut }}$ India's Number 1 Education App

PHYSICS

BOOKS - S CHAND PHYSICS (ENGLISH)

SELF ASSESSMENT PAPER 4

Section A Choose The Correct Alternative

1. Two cars of masses m_{1} and m_{2} are moving in circles od radii r_{1} and r_{2}. Their speeds are such that they complete one revolution in the same time. The ratio of their angular speed is:
B. $r_{1}: r_{2}$
C. $1: 1$
D. $m_{1} r_{1}: m_{2} r_{2}$

Answer:

D Watch Video Solution

2. The following particles are moving with the same velocity. Which particle has maximum momentum ?
A. β particle
B. proton
C. α particle

D. neutron

Answer:

- Watch Video Solution

3. If a particle is displaced by a diastance $2 \hat{i}+3 \hat{j}+5 \hat{k} \mathrm{~m}$ by applying a force $5 \hat{i}+2 \hat{j}+3 \hat{k} \mathrm{~N}$, then work done
A. 31 J
B. 20J
C. 60 J
D. 70 J

Answer:

Watch Video Solution

4. If force F is applied on a body and it moves with a velocity v , the power will be
A. F / v
B. $F \times v$
C. F / v^{2}
D. $F \times v^{2}$

Answer:

- Watch Video Solution

5. The dimensional formula for modulus of rigidity is
A. $\left[M L^{-1} T^{-2}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L T^{-2}\right]$
D. $\left[M L^{-1} L^{-1}\right]$

Answer:

- Watch Video Solution

1. Why does the electric fan continue to rotate for some time after the current is switched off ?

- Watch Video Solution

2. When the weigth of a body placed on a surface is doubled, how does the coefficient of friction channge ?

- Watch Video Solution

3. Write the formula of centripetal acceleration of a particle moving on a circular path in terms of the angular velocity.
4. In which motion momentum change but kinetic energy does not?

- Watch Video Solution

5. Can two streamlines in a flowing liquid cross each other ?

- Watch Video Solution

6. Antiseptic solution used to wash cuts and wounds in the body have surface tension lower than water. What is its advantages ?

- Watch Video Solution

7. Why is it necessary for a pendulum executing SHM to have its amplitude small as compared to its length ?

- Watch Video Solution

Section B

1. Obtain SI unit of work in terms of foundation units.
2. Two bodies of masses M and m are allowed to fall from the same height. It the resistance for each be the same, then, will both the bodies reach the earth simultaneously ?

- Watch Video Solution

3. Distinguish between sliding friction and rolling friction.

- Watch Video Solution

4. (a) Two protons are brought towards each other. Will the potential energy of the system decrease or increase? If a proton and an electron be bought nearer, then ?

D Watch Video Solution

5. (b) Find the power of a 60 kg man who can climb up a height of 10 m in half a minute. $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

- Watch Video Solution

6. Explain the concept of torque. Write its unit and dimensions.

- Watch Video Solution

7. A material beaks up under a stress of $20 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. If the density of the material is $2.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, calculate
the length of a wire made of this material, which on hanging may break under its own weight. $\left(g=9.8 m / s^{2}\right)$

- Watch Video Solution

8. The wings of an aeroplane are rounded at the front and flattened at the back. Why ?

- Watch Video Solution

9. (a) When wax is rubbed on cloth, the cloth becomes water proof. Explain why ?

- Watch Video Solution

10. A mecury drop of radius 1 cm is sprayed into 10^{5} droplets of equal size. Calculate the increase in surface energy if surface tension of mercury is $35 \times 10^{-3} \mathrm{~N} / \mathrm{m}$.

D Watch Video Solution

11. For an oscillating pendulum

What is the direction of acceleration of the bob at
(a) The mean position ? The end point ?
(b) Is the tension is the string constant throughout the oscillation? If not, when is it
(i) The least ?
(ii) The greatest ?
12. "The shape of a pulse getr distorted during propagation in a dispersive medium." Why?

- Watch Video Solution

13. The frequency of the first overtone of a closed organ pipe is the same as that of the first overtone of an open pipe. What is the ratio between their lengths ?

- Watch Video Solution

Section C

1. (a) Taking equation of a palne progressive wave as $y=\alpha \sin . \frac{2 \pi}{\gamma}(v t-x)$. Write down the expression for the paticle velocity. Show that the particle veloity at a point wave velocity \times slope of the displacement curve at the point

D Watch Video Solution

2. (b) Write the equation of a progressive wave propagating along the positive x-direction, whose amplitude is 5 cm , frequency 250 Hz and velocity $500 \mathrm{~ms}^{-1}$
3. A 10 g bullet is fried at a plank od wood with a speed of $200 \mathrm{~m} / \mathrm{s}$. After passing through the plank which is 1.0 m thick the speed of the bullet reduces to $100 \mathrm{~m} / \mathrm{s}$. Find the average resistance offered by the plank.

D Watch Video Solution

4. Find the scalar and vector products of two vectors
$\vec{A}=(3 \hat{i}-4 \hat{j}+5 \hat{k})$ and $\vec{B}=(-2 \hat{i}+\hat{j}-3 \hat{k})$.

- Watch Video Solution

5. Explain the meaning of kinetic energy. With examples obtain an expression for the kinetic energy of a body moving with a uniform velocity.

- Watch Video Solution

6. Obtain a formula for the variation of 'g' below the surface of earth. Hence show that ' g ' vanishes at the centre of earth.

- Watch Video Solution

7. If the earth were a perfect sphere of radius $6.37 \times 10^{6} \mathrm{~m}$, rotating about its axis with a period of 1 day
$\left(=8.64 \times 10^{6} s\right)$, how much would the acceleration due to gravity differ from the poles to the equator.

- Watch Video Solution

8. What is an ideal (or perfect) gas ? Under what condition of pressure and temperature can a gas be assumed as an ideal gas ? Determine the gas constant for one gram molecule of a gas.

- Watch Video Solution

9. An oxygen cylinder having volumn 30 litre shows a initial gauge pressure 15 atm and temperature $27^{\circ} \mathrm{C}$. Some oxygen is taken out from the cylinder, so that the gauge
pressure comes down to 11 atm and temperature comes down to $17^{\circ} C$. What amount of gas was taken out from the cylinder?

D Watch Video Solution

Section D

1. (a) Write a equation of motion in different states and derive the relation :
$s=u+\frac{1}{2} a(2 t-1)$
Where, s is the distance covered in $t^{\text {th }}$ second, u is initial velocity and a is uniform acceleration.
2. A rocket which is sent to establish a satellite in its orbit acquires a velocity of $2.9 \times 10^{4} \mathrm{~km} / \mathrm{h}$ in 2.05 minutes.
(i) Determine its average acceleration in $\mathrm{km} / \mathrm{h}^{2}$
(ii) if it has enough fuel to go on for an hour with the same acceleration, then how much velocity will it attain ?

Assume that its initial velocity was zero
(iii) How much distance will it travel in this hour?

- Watch Video Solution

3. (a) Write rules of friction. Friction force decreases in ball
bearings because balls are spherical. Does it mean frictional force depend upon area ? Explain.
4. A bullet of mass 10 g is fired horizontally into a 4 kg wooden block resting on a horizontal surface. The coefficient of kinetic friction between the block and the surface is 0.25 . The bullet is embadded the block and the combination moves a distance of 20 m before coming to rest. Find the speed of the bullet just before striking the block. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

- Watch Video Solution

5. (a) What is meant by the principle of continuity ? Show that velocity of a liquid is inversely proportional to the area of cross-section of a pipe or tube.
6. Water is flowing continuously from a tap having an internal diameter $8 \times 10^{-3} \mathrm{~m}$. The water velocity as it leaves the tap is $0.4 m s^{-1}$. The diameter of the water stream at a distance $2 \times 10^{-1} \mathrm{~m}$ below the tap is close to
